Skip to main content
Log in

Spatio-temporal characteristics of wind observations over South Korea: 1982–2011

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we investigate the spatial and temporal characteristics of long-term (1982–2011) wind measurements over South Korea. First, ground-based measurements are adjusted to standard 10 m above ground level using a modified wind-profile power law, to account for wind variation in the actual measurement height. Then, wind climatology, variability, and long-term trends were calculated using the daily wind-speed series. The spatially averaged annual mean wind speeds over South Korea were found to be characterized by a light breeze (approximately 2 m s−1). Seasonality in the mean wind speed was generally influenced by the monsoonal flow; wind speeds were higher in winter and spring than in summer and autumn. However, the tendencies of near-surface wind speed showed opposite values at clustered stations regardless of season. There were negative trends with −0.028 m s−1 a−1 for 25% of the stations (R1) and positive trends with 0.020 m s−1 a−1 for 75% of the stations (R2). We found that the annual trends in the two regions (R1 and R2) were statistically significant and homogenous for all time-varying percentiles over 12 months of the year. Our study also identified that geo-spatial features such as elevation, land-use, geographical setting, and urbanization have large impacts on the spatiotemporal characteristics of the local wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ABS Energy Research, 2010: The wind power report. 7th ed., London, UK, 695 pp.

    Google Scholar 

  • Aristidi, E., and Coauthors, 2005: An analysis of temperatures and wind speeds above Dome C, Antarctica. Astronomy & Astrophysics, 430, 739–746, DOI: 10.1051/0004-6361:20041876.

    Article  Google Scholar 

  • Bresch, D. N., M. Bisping, and G. Lemcke, 2000: Storm over Europe: An underestimated risk. Swiss Re Publishing, Zurich, Switzerland, 27 pp.

    Google Scholar 

  • Byon, J.-Y., Y.-J. Choi, and J.-W. Lee, 2011: Global distribution of surface layer wind speed for the years 2000–2009 based on the NCEP Reanalysis. Atmosphere, 21, 439–446. (in Korean with English abstract)

    Google Scholar 

  • Cadenas, E., and W. Rivera, 2009: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renewable Energy, 34, 274–278, DOI: 10.1016/j.renene.2008.03.014.

    Article  Google Scholar 

  • Chanal, M., and P. Meisen, 2012: How is 100% Renewable Energy Possible in South Korea by 2020?. Global Energy Network Institute, San Diego, USA, 33 pp.

    Google Scholar 

  • Choi, E.-S., and I.-J. Moon, 2008: The variation of extreme values in the precipitation and wind speed during 56 years in Korea. Atmosphere, 18, 397–416. (in Korean with English abstract)

    Google Scholar 

  • Gökçek, M., A. Bayülken, and Ş. Bekdemir, 2007: Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey. Renewable Energy, 32, 1739–1752, DOI: 10.1016/j.renene.2006.11.017.

    Article  Google Scholar 

  • Griffin, B. J., K. E. Kohfeld, A. B. Cooper, and G. Boenisch, 2010: Importance of location for describing typical and extreme wind speed behavior. Geophys. Res. Lett., 37, L22804, DOI: 10.1029/2010GL045052.

    Article  Google Scholar 

  • Guo, H., M. Xu, and Q. Hu, 2011: Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol., 31, 349–358, DOI: 10.1002/joc.2091.

    Article  Google Scholar 

  • Heo, C.-U., Y.-S. Lee, and E.-J. Lee, 2010: Spatial distribution characteristics of wind map over Korea using meteorological resources. Atmosphere, 20, 63–71. (in Korean with English abstract).

    Google Scholar 

  • IPCC, 2011: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.

    Google Scholar 

  • Jiang, Y., Y. Luo, Z. Zhao, and S. Tao, 2010: Changes in wind speed over China during 1956–2004. Theoretical and Applied Climatology, 99, 421–430, DOI: 10.1007/s00704-009-0152-7.

    Article  Google Scholar 

  • Jimenez, B., F. Durante, B. Lange, T. Kreutzer, and J. Tambke, 2007: Offshore wind resource assessment with WAsP and MM5: Comparative study for the German Bight. Wind Energy, 10, 121–134, DOI: 10.1002/we.212.

    Article  Google Scholar 

  • Kim, M.-K., and S. Kim, 2011: Quantitative estimates of warming by urbanization in South Korea over the past 55 years (1954–2008). Atmos. Environ., 45, 5778–5783, DOI: 10.1016/j.atmosenv.2011.07.028.

    Article  Google Scholar 

  • KMA, 2011: Annual climatological report. 11-1360000-000016-10, Seoul, Korea. (in Korean)

    Google Scholar 

  • Kug, J.-S., and M.-S. Ahn, 2013: Impact of urbanization on recent temperature and precipitation trends in the Korean peninsula. Asia-Pacific J. Atmos. Sci., 49, 151–159, DOI: 10.1007/s13143-013-0016-z.

    Article  Google Scholar 

  • Liu, H., H.-Q. Tian, C. Chen, and Y.-F. Li, 2010: A hybrid statistical method to predict wind speed and wind power. Renewable Energy, 35, 1857–1861, DOI: 10.1016/j.renene.2009.12.011.

    Article  Google Scholar 

  • Longobardi, A., and P. Villani, 2010: Trend analysis of annual and seasonal rainfall time series in the Meditteranean area. Int. J. Climatol., 30, 1538–1546, DOI: 10.1002/joc.2001.

    Google Scholar 

  • Mahowald, N. M., J. A. Ballantine, J. Feddema, and N. Ramankutty, 2007: Global trends in visibility: implications for dust sources. Atmos. Chem. Phys., 7, 3309–3339.

    Article  Google Scholar 

  • Mari, R., L. Bottai, C. Busillo, F. Calastrini, B. Gozzini, and G. Gualtieri, 2011: A GIS-based interactive web decision support system for planning wind farms in Tuscany (Italy). Renewable Energy, 36, 754–763, DOI: 10.1016/j.renene.2010.07.005.

    Article  Google Scholar 

  • McVicar, T. R., and C. Körner, 2013: On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia, 171, 335–337, DOI: 10.1007/s00442-012-2416-7.

    Article  Google Scholar 

  • _____, and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182–205, DOI: 10.1016/j.jhydrol.2011.10.024.

    Article  Google Scholar 

  • _____, T. G. Van Niel, M. L. Roderick, L. T. Li, X. G. Mo, N. E. Zimmermann, and D. R. Schmatz, 2010: Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960-2006. Geophys. Res. Lett., 37, L06402, DOI: 10.1029/2009GL042255.

    Article  Google Scholar 

  • _____, T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, DOI: 10.1029/2008GL035627.

    Article  Google Scholar 

  • _____, T. G. Van Niel, L. T. Li, M. F. Hutchinson, X. Mu, and Z. H. Liu, 2007: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol., 338, 196–220, DOI: 10.1016/j.jhydrol.2007.02.018.

    Article  Google Scholar 

  • Migoya, E., A. Crespo, Á. Jiménez, J. García, and F. Manuel, 2007: Wind energy resource assessment in Madrid region. Renewable Energy, 32, 1467–1483, DOI: 10.1016/j.renene.2006.06.015.

    Article  Google Scholar 

  • Miller, C. A., and A. G. Davenport, 1998: Guidelines for the calculation of wind speed-ups in complex terrain. J. Wind Eng. Ind. Aerodyn., 74–76, 189–197, DOI: 10.1016/S0167-6105(98)00016-6.

    Article  Google Scholar 

  • Moratiel, R., R. L. Snyder, J. M. Durán, and A. M. Tarquis, 2011: Trends in climatic variables trends and future reference evapotranspiration in Duero Valley (Spain). Nat. Haszrds. Ear. Sys. Sci., 11, 1795–1805, DOI: 10.5194/nhess-11-1795-2011.

    Article  Google Scholar 

  • Ohunakin, O. S., 2011: Wind resource evaluation in six selected high altitude locations in Nigeria. Renewable Energy, 36, 3273–3281, DOI: 10.1016/j.renene.2011.04.026.

    Article  Google Scholar 

  • Peterson, E. W., and J. P. Hennessey, 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteor., 17, 390–394, DOI: 10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO:2.

    Article  Google Scholar 

  • Pirazzoli, P. A., and A. Tomasin, 2003: Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int. J. Climatol., 23, 963–973, DOI: 10.1002/joc.925.

    Article  Google Scholar 

  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, DOI: 10.1029/2005JD005899.

    Article  Google Scholar 

  • _____, R. J. Barthelmie, D. T. Young, E. S. Takle, R. W. Arritt, D. Flory, W. J. Gutowski Jr., A. Nunes, and J. Roads, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, DOI: 10.1029/2008JD011416.

    Article  Google Scholar 

  • Rasmussen, D. J., T. Holloway, and G. F. Nemet, 2011: Opportunities and challenges in assessing climate change impacts on wind energy-a critical comparison of wind speed projections in California. Environ. Res. Lett., 6, 024008, DOI: 10.1088/1748-9326/6/2/024008.

    Article  Google Scholar 

  • Rayner, D. P., 2007: Wind Run Changes: The Dominant Factor Affecting Pan Evaporation Trends in Australia. J. Climate, 20, 3379–3394, DOI: 10.1175/JCLI4181.1.

    Article  Google Scholar 

  • REN21, 2012: Renewables 2012 Global Status Report. Paris, FR, 172 pp.

    Google Scholar 

  • Roads, J. O., S. C. Chen, and K. Ueyoshi, 1995: Comparison of NMC’s global pressure analysis to NCDC’s U.S. observations. J. Climate, 8, 1410–1428, DOI: 10.1175/1520-0442(1995)008<1410:CONGPA>2.0.CO:2.

    Article  Google Scholar 

  • Robeson, S. M., 2004: Trends in time-varying percentiles of daily minimum and maximum temperature over North America. Geophys. Res. Lett., 31, L04203, DOI: 10.1029/2003GL019019.

    Article  Google Scholar 

  • Rodeghier, M., 1996: Surveys with Confidence: A Practical Guide to Survey Research Using SPSS. SPSS Inc., Chicago, USA, 178 pp.

    Google Scholar 

  • Sailor, D. J., M. Smith, and M. Hart, 2008: Climate change implications for wind power resources in the Northwest United States. Renewable Energy, 33, 2393–2406, DOI: 10.1016/j.renene.2008.01.007.

    Article  Google Scholar 

  • Tuller, S. E., 2004: Measured wind speed trends on the west coast of Canada. Int. J. Climatol., 24, 1359–1374, DOI: 10.1002/joc.1073.

    Article  Google Scholar 

  • Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid, and S. Iagovkina, 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279–294, DOI: 10.1002/joc.1130.

    Article  Google Scholar 

  • Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern hemisphere atmospheric stilling partly attributed to an in-crease in surface roughness. Nat. Geosci., 3, 756–761, DOI: 10.1038/ngeo979.

    Article  Google Scholar 

  • Viles, H. A., and A. S. Goudie, 2003: Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth-Science Reviews, 61, 105–131, DOI: 10.1016/S0012-8252(02)00113-7.

    Article  Google Scholar 

  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209–1225, DOI: 10.1175/2009JCLI 3200.1.

    Article  Google Scholar 

  • Weisser, D., and T. J. Foxon, 2003: Implications of seasonal and diurnal variations of wind velocity for power output estimation of a turbine: a case study of Grenada. Int. J. Energy Res., 27, 1165–1179, DOI: 10.1002/er.938.

    Article  Google Scholar 

  • Wever, N., 2012: Quantifying trends in surface roughness and the effect on surface wind speed observations. J. Geophys. Res., 117, D11104, DOI: 10.1029/2011JD017118.

    Article  Google Scholar 

  • Wood, N. 2000: Wind flow over complex terrain: A historical perspective and the prospect for large-eddy modeling. Bound.-Layer Meteor., 96, 11–32, DOI: 10.1023/A:1002017732694.

    Article  Google Scholar 

  • Xu, M., C. P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang, 2006: Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, D24111, DOI: 10.1029/2006JD 007337.

    Article  Google Scholar 

  • Yim, S. H. L., J. C. H. Fung, and A. K. H. Lau, 2009: Mesoscale simulation of year-to-year variation of wind power potential over southern China. Energies, 2, 340–361, DOI: 10.3390/en20200340.

    Article  Google Scholar 

  • Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two contrasting U. S. Regions. J. Hydrometeor., 7, 1043–1060, DOI: 10.1175/JHM536.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Kim, DY. Spatio-temporal characteristics of wind observations over South Korea: 1982–2011. Asia-Pacific J Atmos Sci 49, 551–560 (2013). https://doi.org/10.1007/s13143-013-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0049-3

Key words

Navigation