Skip to main content

Advertisement

Log in

Dysfunction of Membrane Trafficking Leads to Ischemia-Reperfusion Injury After Transient Cerebral Ischemia

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neurons require an extraordinarily high level of membrane trafficking activities because of enriched axonal terminals and dendritic branches. For that reason, defects in the membrane trafficking pathway are a hallmark of most, and may be all, neurodegenerative disorders. A major cellular membrane trafficking pathway is the Golgi apparatus (Golgi hereafter)–late endosome–lysosome axis for supplying lysosomal enzymes. This pathway is regulated by N-ethylmaleimide-sensitive factor (NSF) ATPase. This review article is to discuss a novel hypothesis that brain ischemia inactivates NSF ATPase, resulting in a cascade of events of disruption of the Golgi—endosome—lysosome pathway, release of cathepsin B (CTSB), and induction of mitochondrial outer membrane permeabilization (MOMP) during the postischemic phase. This hypothesis is supported by recent studies demonstrating that NSF is trapped into inactive protein aggregates in neurons destined to die after brain ischemia. Consequently, Golgi, transport vesicles (TVs), and late endosomes (LEs) are accumulated and damaged, which is followed by CTSB release from these damaged structures. Moderate release of CTSB cleaves Bax-like BH3 protein (Bid) to become active truncated Bid (tBid). Active tBid is then translocated to the mitochondrial outer membrane, resulting in oligomerization of BCL2-associated X protein (Bax) forming the mitochondrial outer membrane pores, and releasing mitochondrial intramembranous proteins. Extensive CTSB release, however, can digest cellular proteins indiscriminately to induce cell death. Based on these new observations, we propose a novel hypothesis, i.e., brain ischemia leads to NSF inactivation, resulting in a massive buildup of damaged Golgi, TVs and LEs, fatal release of CTSB, induction of MOMP, and eventually brain ischemia-reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NSF:

N-ethylmaleimide-sensitive factor ATPase

E329Q:

A NSF-deficient mutant

SNAREs:

Soluble NSF attachment protein receptors

SNAP:

Soluble NSF attachment protein

CTSB:

Cathepsin B

CTSD:

Cathepsin D

TVs:

Transport vesicles

LE:

Late endosome

EL:

Endolysosome

L:

Lysosome

MOMP:

Mitochondrial outer membrane permeabilization

Bax:

BCL2-associated X protein

Bid:

Bax-like BH3 protein

CytC:

Cytochrome C

AIF:

Apoptosis inducing factor

EndoG:

Endonuclease G

Htra2:

A mitochondrial protease

IRI:

Ischemia-reperfusion injury

Tg:

Transgenic

DG:

Dentate gyrus

EM:

Electron microscopy

References

  1. Smith ML, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl). 1984;64:319–32.

    Article  CAS  Google Scholar 

  2. Taniguchi D, Baernstein A, Nichol G. Cardiac arrest: a public health perspective. Emerg Med Clin North Am. 2012 Feb;30(1):1–12.

    Article  PubMed  Google Scholar 

  3. Kirino T, Tamura A, Sano K. Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol. 1984;64:139–47.

    Article  PubMed  CAS  Google Scholar 

  4. Kirino T, Sano K. Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol. 1984;62:209–18.

    Article  PubMed  CAS  Google Scholar 

  5. Lin B, Ginsberg MD, Busto R. Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: microglial, astrocytic and endothelial alterations. Acta Neuropathol. 1998;96:610–20.

    Article  PubMed  CAS  Google Scholar 

  6. Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol. 1992;85:79–87.

    Article  PubMed  CAS  Google Scholar 

  7. Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation after transient cerebral ischemia. J Neurosci. 2000;20:3191–1999.

    Article  PubMed  CAS  Google Scholar 

  8. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, et al. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab. 2001;21:865–75.

    Article  PubMed  CAS  Google Scholar 

  9. Liu CL, Ge P, Zhang F. Hu BR Co-translational protein aggregation after transient cerebral ischemia. Neuroscience. 2005;134:1273–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang F, Liu CL. Hu BR Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem. 2006;98:102–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tuvim MJ, Adachi R, Hoffenberg S, Dickey BF. Traffic control: Rab GTPases and the regulation of interorganellar transport. News Physiol Sci. 2001;16:56–61.

    PubMed  CAS  Google Scholar 

  12. Wang D, Chan CC, Cherry S, Hiesinger PR. Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci. 2013;70:2919–34.

    Article  PubMed  CAS  Google Scholar 

  13. Repnik U, Česen MH, Turk B. The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol. 2013;5:a008755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tjelle TE, Brech A, Juvet LK, Griffiths G, Berg T. Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci. 1996;109(Pt 12):2905–14.

    PubMed  CAS  Google Scholar 

  15. Luzio JP, Gray SR, Bright NA. Endosome-lysosome fusion. Biochem Soc Trans. 2010;38:1413–6.

    Article  PubMed  CAS  Google Scholar 

  16. Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends Cell Biol. 2014;24:35–43.

    Article  PubMed  CAS  Google Scholar 

  17. Mohtashami M, Stewart BA, Boulianne GL, Trimble WS. Analysis of the mutant Drosophila N-ethylmaleimide sensitive fusion-1 protein in comatose reveals molecular correlates of the behavioural paralysis. J Neurochem 2001. 2001;77:1407–17.

    CAS  Google Scholar 

  18. Yuan D, Liu C, Hu B. Dysfunction of membrane trafficking leads to CTSB release after brain ischemia. Transl Stroke Res. 2017, in press.

  19. Liu CL, Hu BR. Alterations of N-ethylmaleimide-sensitive atpase following transient cerebral ischemia. Neuroscience. 2004;128:767–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tang K, Liu C, Kuluz J, Hu B. Alterations of CaMKII after hypoxia-ischemia during brain development. J Neurochem. 2004;91:429–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dalal S, Rosser MFN, Cyr DM, Hanson PI. Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Glick B, ed. Mol Biol Cell 2004;15:637–648.

  22. Offenhauser C, Lei N, Roy S, Collins BM, Stow JL, Murray RZ. Syntaxin 11 binds Vti1b and regulates late endosome to lysosome fusion in macrophages. Traffic. 2011;12:762–73.

    Article  PubMed  CAS  Google Scholar 

  23. Petanceska S, Burke S, Watson SJ, Devi L. Differential distribution of messenger RNAs for cathepsins B, L and S in adult rat brain: an in situ hybridization study. Neuroscience. 1994;59:729–38.

    Article  PubMed  CAS  Google Scholar 

  24. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 1824;2012:68–88.

    Google Scholar 

  26. Pungerčar JR, Caglič D, Sajid M, et al. Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J. 2009;276:660–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kunwar AJ, Rickmann M, Backofen B, Browski SM, Rosenbusch J, Schöning S, et al. Lack of the endosomal SNAREs vti1a and vti1b led to significant impairments in neuronal development. PNAS U S A. 2011;108:2575–80.

    Article  Google Scholar 

  28. Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman JE. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A. 1988;85:7852–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Diaz R, Mayorga LS, Weidman PJ, Rothman JE, Stahl PD. Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature. 1989;339:398–400.

    Article  PubMed  CAS  Google Scholar 

  30. Wattenberg BW, Raub TJ, Hiebsch RR, Weidman PJ. The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation. J Cell Biol. 1992;118:1321–32.

    Article  PubMed  CAS  Google Scholar 

  31. Acharya U, Jacobs R, Peters JM, Watson N, Farquhar MG, Malhotra V. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell. 1995;82:895–904.

    Article  PubMed  CAS  Google Scholar 

  32. Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S. EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci. 2009;122:389–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mullock BM, Bright NA, Fearon CW, Gray SR, Luzio J. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J Cell Biol. 1998;140:591–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016;S1568-1637:30024–31.

    Google Scholar 

  35. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci. 2016;1371:30–44.

    Article  PubMed  Google Scholar 

  36. Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H. The critical role of proteolytic relay through cathepsins B and E in the phenotypic change of microglia/macrophage. J Neurosci. 2015;35:12488–501.

    Article  PubMed  CAS  Google Scholar 

  37. Xu Y, Wang J, Song X, Wei R, He F, Peng G, et al. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull. 2016;120:97–105.

    Article  PubMed  CAS  Google Scholar 

  38. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis’. Eur J Neurosci. 1998;10:1723–33.

    Article  PubMed  CAS  Google Scholar 

  39. Hook GR, Yu J, Sipes N, Pierschbacher MD, Hook V, Kindy MS. The cysteine protease cathepsin B is a key drug target and cysteine protease inhibitors are potential therapeutics for traumatic brain injury. J Neurotrauma. 2014;31:515–29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Katunuma N, Posttranslational Processing and Modification of Cathepsins and Cystatins, J Signal Transduct, vol. 2010, Article ID 375345.

  41. Montaser M, Lalmanach G, Mach L. CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within living cells. Biol Chem. 2002;383:1305–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mihalik R, Imre G, Petak I, Szende B, Kopper L. Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown. Cell Death Differ. 2004;11:1357–60.

    Article  PubMed  CAS  Google Scholar 

  43. Ryu JH, Na JH, Ko HK, You DG, Park S, Jun E, et al. Non-invasive optical imaging of cathepsin B with activatable fluorogenic nanoprobes in various metastatic models. Biomaterials. 2014;35:2302–11.

    Article  PubMed  CAS  Google Scholar 

  44. Cathers BE, Barrett C, Palmer JT, Rydzewski RM. pH Dependence of inhibitors targeting the occluding loop of cathepsin B. Bioorg Chem. 2002;30:264–75.

    Article  PubMed  CAS  Google Scholar 

  45. Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 2016;32:22–37.

    Article  PubMed  CAS  Google Scholar 

  46. Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta. 2012;824:22–33.

    Article  CAS  Google Scholar 

  47. Jakobson M, Jakobson M, Llano O, Palgi J, Arumäe U. Multiple mechanisms repress N-Bak mRNA translation in the healthy and apoptotic neurons. Cell Death Dis. 2013;4:e777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond: mitochondrial performance in apoptosis. FEBS J 2017 Jul 29. doi: https://doi.org/10.1111/febs.14186. [Epub ahead of print].

  49. Groth-Pedersen L, Jäättelä M, Nylandsted J. A method to monitor lysosomal membrane permeabilization by immunocytochemistry. Cold Spring Harb Protoc. 2015;2015:904–7.

    Article  PubMed  Google Scholar 

  50. Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K, Nolan DP, et al. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun. 2015;6:8078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hamacher-Brady A, Brady NR. Bax/Bak-dependent, Drp1-independent targeting of X-linked inhibitor of apoptosis protein (XIAP) into inner mitochondrial compartments counteracts Smac/DIABLO-dependent effector caspase activation. J Biol Chem. 2015;290:22005–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dave Z, Byfield M, Bossy-Wetzel E. Assessing mitochondrial outer membrane permeabilization during apoptosis. Methods. 2008;46:319–23.

    Article  PubMed  CAS  Google Scholar 

  53. Goyal S, Amar SK, Dubey D, Pal MK, Singh J, Verma A, et al. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation. J Hazard Mater. 2015;300:415–25.

    Article  PubMed  CAS  Google Scholar 

  54. Amantini C, Morelli MB, Santoni M, Soriani A, Cardinali C, Farfariello V, et al. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells. Oncoscience. 2015;2:395–409.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kilinc M, Gürsoy-Ozdemir Y, Gürer G, Erdener SE, Erdemli E, Can A, et al. Lysosomal rupture, necroapoptotic interactions and potential crosstalk between cysteine proteases in neurons shortly after focal ischemia. Neurobiol Dis. 2010;40:293–302.

    Article  PubMed  CAS  Google Scholar 

  56. Hsu SF, Hsu CC, Cheng BC, Lin CH. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70. Apoptosis. 2014;19:1571–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health (NIH) grants: NS36810, NS40407, and NS097875; by Veteran Affair Merit grant: I01BX001696; and by American Heart Association 0940042N-5 to B.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingren Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human subjects. All the experimental procedures involving using animals were approved by the Animal Use and Care Committee in the University of Maryland School of Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Liu, C. & Hu, B. Dysfunction of Membrane Trafficking Leads to Ischemia-Reperfusion Injury After Transient Cerebral Ischemia. Transl. Stroke Res. 9, 215–222 (2018). https://doi.org/10.1007/s12975-017-0572-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0572-0

Keywords

Navigation