Skip to main content

Advertisement

Log in

The Interaction of Water-Soluble Pillar[5]Arenes Containing Amide and Ammonium Fragments with Lipid Bilayer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The absence of toxic properties and genotoxic activity was shown for water-soluble pillar[5]arenes containing amide and ammonium fragments. There was no induced mutation associated with the substitution of base pairs in the Ames test. Using the methods of turbidimetry and transmitting electron microscopy (TEM), the interaction of the macrocycle with the surface of lipid bilayer in the liquid crystalline state was established. DLS detected the appearance of larger particles upon titration of liposome suspension with pillar[5]arene 3. TEM confirms an increase in the average diameter of liposomes in the presence of the macrocycle which may result from liposome fusion.

The interaction of a nontoxic derivative pillar[5]arene with the surface of a lipid bilayer is shown with the help of the turbidimetry and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stepanova, V. B., Shurpik, D. N., Evtugyn, V. G., Stoikov, I. I., Evtugyn, G. A., Osin, Y. N., & Hianik, T. (2016). Label-free electrochemical aptasensor for cytochrome c detection using pillar [5] arene bearing neutral red. Sensors and Actuators B: Chemical, 225, 57–65.

    Article  Google Scholar 

  2. Khairutdinov, B., Ermakova, E., Sitnitsky, A., Stoikov, I., & Zuev, Y. (2014). Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking. Journal of Molecular Structure, 1074, 126–133.

    Article  Google Scholar 

  3. Shamagsumova, R. V., Shurpik, D. N., Padnya, P. L., Stoikov, I. I., & Evtugyn, G. A. (2015). Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta, 144, 559–568.

    Article  Google Scholar 

  4. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A., & Nakamoto, Y. (2008). Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. Journal of the American Chemical Society, 130(15), 5022–5023.

    Article  Google Scholar 

  5. Cao, D., & Meier, H. (2014). Pillar[n]arenes—a novel, highly promising class of macrocyclic host molecules. Asian Journal of Organic Chemistry, 3(3), 244–262.

    Article  Google Scholar 

  6. Yakimova, L. S., Shurpik, D. N., Makhmutova, A. R., & Stoikov, I. I. (2017). Pillar[5]arenes bearing amide and carboxylic groups as synthetic receptors for alkali metal ions. Macroheterocycles, 10(2), 226–232.

    Article  Google Scholar 

  7. Yakimova, L., Shurpik, D., & Stoikov, I. (2016). Amide-functionalized pillar[5]arenes as novel type of macrocyclic receptors for the sensing of H2PO4 anion. Chemical Communications, 52, 12462–12465.

    Article  Google Scholar 

  8. Murray, J., Kim, K., Ogoshi, T., Yao, W., & Gibb, C. B. (2017). The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chemical Society Reviews, 46, 2479–2496.

    Article  Google Scholar 

  9. McCann, J., & Ames, B. N. (1976). A simple method for detecting environmental carcinogens as mutagens. Annals of the New York Academy of Sciences, 271, 5–13. https://doi.org/10.1111/j.1749-6632.1976.tb23086.x.

    Article  Google Scholar 

  10. Ilinskaya, O., Zelenikhin, P., Kolpakov, A., Karamova, N., & Margulis, A. (2004). Cytotoxic and genotoxic effects of ss-(triphenylpho-s-phonio)ethyl carboxylate and of N,N'-bis(dihexylphos-phinoylmethyl)-1,4-diaminocyclohexane. Med Sci Monit, 10, 294–299.

    Google Scholar 

  11. Tada, H., Shiho, O., Kuroshima, K., Koyama, M., & Tsukamoto, K. (1986). An improved colorimetric assay for interleukin 2. Journal of Immunological Methods, 93, 157–165.

    Article  Google Scholar 

  12. Shurpik, D. N., Yakimova, L. S., Rizvanov, I. K., Plemenkov, V. V., & Stoikov, I. I. (2015). Water-soluble pillar[5]arenes: synthesis and characterization of the inclusion complexes with p-toluenesulfonic acid. Macroheterocycles, 8(2), 128–134.

    Article  Google Scholar 

  13. Wheate, N., Dickson, K., Kim, R., Nematollahi, A., Macquart, R., Kayser, V., Yu, G., Church, W., & Marsh, D. (2016). Host-guest complexes of carboxylated pillar[n]arenes with drugs. Journal of Pharmaceutical Sciences, 105(12), 3615–3625.

    Article  Google Scholar 

  14. Granata, G., Paterniti, I., Geraci, C., Cunsolo, F., Esposito, E., Cordaro, M., Blanco, A. R., Cuzzocrea, S., & Consoli, G. M. L. (2017). Potential eye drop based on a calix[4]arene nanoassembly for curcumin delivery: enhanced drug solubility, stability, and anti-inflammatory effect. Molecular Pharmaceutics, 14(5), 1610–1622.

    Article  Google Scholar 

  15. Sansone, F., Dudič, M., Donofrio, G., Rivetti, C., Baldini, L., Casnati, A., Cellai, S., & Ungaro, R. (2006). DNA condensation and cell transfection properties of guanidinium calixarenes: dependence on macrocycle lipophilicity, size, and conformation. Journal of the American Chemical Society, 128, 14528–14536.

    Article  Google Scholar 

  16. Rodik, R. V., Klymchenko, A. S., Jain, N., Miroshnichenko, S. I., Richert, L., Kalchenko, V. I., & Mély, Y. (2011). Virus-sized DNA nanoparticles for gene delivery based on micelles of cationic calixarenes. Chemistry, 17, 5526–5538.

    Article  Google Scholar 

  17. Bagnacani, V., Franceschi, V., Bassi, M., Lomazzi, M., Donofrio, G., Sansone, F., Casnati, A., & Ungaro, R. (2013). Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery. Nature Communications, 4, 1721–1727.

    Article  Google Scholar 

  18. Galukhin, A. V., & Stoikov, I. I. (2014). Guanidine-equipped thiacalix[4]arenes: synthesis, interaction with DNA and aggregation properties. Mendeleev Communications, 24(2), 82–84.

    Article  Google Scholar 

  19. Nierengarten, I., Nothisen, M., Sigwalt, D., Biellmann, T., Holler, M., Remy, J., & Nierengarten, J. (2013). Polycationic pillar[5]arene derivatives: Interaction with DNA and biological applications. Chemistry - A European Journal, 19, 17552–17558.

    Article  Google Scholar 

  20. Eker, F., Durmus, H. O., Akinoglu, B. G., & Severcan, F. (1999). Application of turbidity technique on peptide-lipid and drug-lipid interactions. Journal of Molecular Structure, 482–483, 693–697.

    Article  Google Scholar 

  21. Dzyurkevich, M. S., Timofeeva, K. N., Faizullin, D. A., Zuev, Y. F., Stoikov, I. I., & Plemenkov, V. P. (2014). Amphiphilic adducts of myrcene and N-substituted maleimides as potential drug delivery agents. Mendeleev Communications, 24(4), 224–225.

    Article  Google Scholar 

  22. Yi, P. N., & Macdonald, R. C. (1973). Temperature dependence of optical properties of aqueous dispersions of phosphatidylcholine. Chemistry and Physics of Lipids, 11, 114–134.

    Article  Google Scholar 

  23. Michel, N., Fabiano, A. S., Polidori, A., Jack, R., & Pucci, B. (2006). Determination of phase transition temperature of lipids by light scattering. Chemistry and Physics of Lipids, 139, 11–19.

    Article  Google Scholar 

  24. Yakimova, L., Shurpik, D., Gilmanova, L., Makhmutova, A., Rakhimbekova, A., & Stoikov, I. (2016). Highly selective binding of methyl orange dye by cationic water-soluble pillar[5]arenes. Organic & Biomolecular Chemistry, 14, 4233–4238.

    Article  Google Scholar 

  25. Makino, K., Yamada, T., Kimura, M., Oka, T., & Ohshima, H. (1991). Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophysical Chemistry, 41, 175–183.

    Article  Google Scholar 

Download references

Funding

The study was partly supported by grant № 17-03-00858 from the Russian Foundation for Basic Research. The study was also partly performed within the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulat I. Khairutdinov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 3342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, P.V., Gruzdeva, E.V., Faizullin, D.A. et al. The Interaction of Water-Soluble Pillar[5]Arenes Containing Amide and Ammonium Fragments with Lipid Bilayer. BioNanoSci. 8, 888–894 (2018). https://doi.org/10.1007/s12668-018-0532-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0532-5

Keywords

Navigation