Skip to main content

Advertisement

Log in

The relative role of ecological interactions and environmental variables on the population dynamics of marine benthic polychaetes

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

In order to elucidate how ecological interactions drive the abundances of marine benthic polychaete populations and the role that environmental variables play in their dynamics, we examined long-term dynamics of winter abundance in 13 polychaete species from benthic samples obtained over 15 years (1993 to 2007) at Punta Coloso, northern Chile on the Pacific coast of South America. We examined the relative importance of density dependence, winter sea surface temperature (SSTW) and Southern Oscillation Index (SOI) on polychaete dynamics. All species studied showed conspicuous abundance oscillations, consistent with negative density-dependent population feedbacks. Model selection across a suite of population dynamic models showed that for six species, the best model included the effect of environmental variables, SSTW in the previous year, while the SOI index was the relevant variable in two polychaete species. A pure density-dependent model best explained the population dynamics of the remaining five species. Our results contrast with traditional approaches, which focus on the importance of abiotic factors in structuring marine benthic systems, and demonstrate the importance of theoretical synthesis and analysis to understand long-term dynamics in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åkesson B (1976) Temperature and life cycle in Ophryotrocha labronica (Polychaeta, Dorvilleidae). Ophelia 15:37–47

    Article  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago

    Google Scholar 

  • Angilletta MJ (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545

    Article  Google Scholar 

  • Berryman AA (1999) Principles of population dynamics and their application. Stanley Thornes, Cheltenham

    Google Scholar 

  • Bierman SM, Fairbairn JP, Petty SJ, Elston DA, Tidhar D, Lambin X (2006) Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.). Am Nat 167:583–590

    Article  PubMed  Google Scholar 

  • Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643

    Article  PubMed  Google Scholar 

  • Carrasco FD (1976) Paraonidae (Aricidea pigmentata n. sp.), Magelonidae y Oweniidae (Annelida, Polychaeta) en Bahía Concepción, Chile. B Soc Biol Concepción 50:113–121

    Google Scholar 

  • Carrasco FD (1997) Sublittoral macrobenthic fauna off Punta Coloso, Antofagasta, northern Chile: high persistence of the polychaete assemblage. Bull Mar Sci 60:443–459

    Google Scholar 

  • Carrasco FD, Moreno RA (2006) Long-term dynamics (1990 to 2004) of the polychaete fauna from the sublittoral soft-bottoms off Punta Coloso (Antofagasta), northern Chile. Sci Mar 70:169–178

    Article  Google Scholar 

  • Carrasco FD, Palma M (2003) Two new species of polychaetes from the sublittoral bottoms off Antofagasta, Northern Chile: Clymenella fauchaldi n. sp. (Maldanidae) and Mooreonuphis colosensis n. sp. (Onuphidae). Hydrobiologia 496:35–39

    Article  Google Scholar 

  • Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen M (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221

    Article  PubMed  CAS  Google Scholar 

  • Daneri G, Dellarossa V, Quiñones R, Jacob B, Montero P, Ulloa O (2000) Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar Ecol Prog Ser 197:41–49

    Article  Google Scholar 

  • Ehlers E (1901) Die Polychaeten des magellanischen und chilenischen Strandes. Ein faunistischer Versuch. Festschrift zur Feier des Hundertfünfzigjährigen Bestehens des Königlichen Gesellschaft der Wissenschaften zu Göttingen, Abhandlungen der Mathematisch-Physikalischen Klasse. 1-232, 25 plates

  • Estay SA, Lima M (2010) Combined effect of ENSO and SAM on the population dynamics of the invasive yellowjacket wasp in central Chile. Popul Ecol 52:289–294

    Article  Google Scholar 

  • Fauchald K (1980) Onuphidae (Polychaeta) from Belize, Central America, with notes on related taxa. Proc Biol Soc Wash 93:797–829

    Google Scholar 

  • Gallardo VA, Palma M, Carrasco FD, Gutiérrez D, Levin L, Cañete J (2004) Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res Part II 51:2475–2490

    Article  CAS  Google Scholar 

  • Ginzburg LR (1998) Population dynamics based on maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, Oxford, pp 42–54

    Google Scholar 

  • Ginzburg L, Colyvan M (2004) Ecological orbits: how planets move and populations grow. Oxford University Press, New York

    Google Scholar 

  • Ginzburg LR, Taneyhill DE (1994) Population cycles of forest Lepidoptera: a maternal effect hypothesis. J Anim Ecol 63:79–92

    Article  Google Scholar 

  • Hartman O (1940) Polychaetous annelids. Part II. Chrysopetalidae to Goniadidae. Allan Hancock Pac Expeditions 7:173–287

    Google Scholar 

  • Hartman O (1945) The marine annelids of North Carolina. Duke Univ Mar Stat Bull 2:1–54

    Google Scholar 

  • Hartmann-Schröder G (1962) Zweiter Beitrag zur Polychaetenfauna von Peru. Kiel Meeresforsch 18:109–147

    Google Scholar 

  • Hartmann-Schröder G (1965) Die Polychaeten des Sublitorals. In: Hartmann-Schröder G, Hartmann G (eds) Zur Kenntnis des Sublitorals der chilenischen Küste unter besonderer Berücksichtigung der Polychaeten und Ostracoden. (Mit Bemerkungen über den Einfluss sauerstoffarmer Strömungen auf die Besiedlung von marinen Sedimenten.). Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut 62:59–305

    Google Scholar 

  • Hixon MA, Carr MH (1997) Synergistic predation, density dependence, and population regulation in marine fish. Science 277:946–949

    Article  CAS  Google Scholar 

  • Hixon MA, Anderson TW, Buch KL, Johnson DW, McLeod JB, Stallings CD (2012) Density dependence and population regulation in marine fish: a large-scale, long-term field manipulation. Ecol Monogr 82:467–489

    Article  Google Scholar 

  • Hollowed AB, Hare SR, Wooster WS (2001) Pacific Basin climate variability and patterns of Northeast Pacific marine fish production. Prog Oceanogr 49:257–282

    Article  Google Scholar 

  • Hutchings P (1998) Biodiversity and functioning of polychaetes in benthic sediments. Biodivers Conserv 7:1133–1145

    Article  Google Scholar 

  • Jones ML (1963) Four new species of Magelona (Annelida, Polychaeta) and a redescription of Magelona longicornis Johnson. Am Mus Novit 2164:1–31

    Google Scholar 

  • Kirchgässner G, Wolters J, Hassler U (2012) Introduction to modern time series analysis. Springer Science & Business Media, Berlin

    Google Scholar 

  • Lamarck JBPA de (1818) Les Annélides. Histoire naturelle des Animaux sans Vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d’une Introduction offrant la Détermination des caractères essentiels de l’Animal, sa distinction du végétal et des autres corps naturels, enfin, l’Exposition des Principes fondamentaux de la Zoologie. Paris, Deterville

  • Lehodey P, Alheit J, Barange M, Baumgartner T, Beaugrand G, Drinkwater K, Fromentin JM, Hare S, Ottersen G, Perry R (2006) Climate variability, fish and fisheries. J Clim 19:5009–5030

    Article  Google Scholar 

  • Levin L, Creed E (1986) Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar Biol 92:103–113

    Article  Google Scholar 

  • Lima M, Keymer JE, Jaksic FM (1999a) El Niño–Southern Oscillation–driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: linking demography and population dynamics. Am Nat 153:476–491

  • Lima M, Marquet PA, Jaksic FM (1999b) El Niño events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography 22:213–218

    Article  Google Scholar 

  • Lima M, Julliard R, Stenseth NC, Jaksic FM (2001) Demographic dynamics of a neotropical small rodent (Phyllotis darwini): feedback structure, predation and climatic factors. J Anim Ecol 70:761–775

    Article  Google Scholar 

  • Moreno RA, Sepúlveda RD, Badano EI, Thatje S, Rozbaczylo N, Carrasco FD (2008) Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997-1998. Helgol Mar Res 62:45–55

    Article  Google Scholar 

  • Müller OF (1776) Zoologiae Danicae Prodromus seu Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Hafniae, Typiis Hallageriis. xxii + 274 pp

  • Palma M, Quiroga E, Gallardo VA, Arntz W, Gerdes D, Schneider W, Hebbeln D (2005) Macrobenthic animal assemblages of the continental margin off Chile (22 degrees to 42 degrees S). J Mar Biol Assoc UK 85:233–245

    Article  CAS  Google Scholar 

  • Peña TS, Johst K, Grimm V, Arntz W, Tarazona J (2005) Population dynamics of a polychaete during three El Niño events: disentangling biotic and abiotic factors. Oikos 111:253–258

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/

    Google Scholar 

  • Rouse G, Pleijel F (2001) Polychaetes. Oxford University Press, Oxford

    Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman & Hall, London

    Book  Google Scholar 

  • Sánchez-Lizaso J, Goni R, Renones O, García-Charton J, Galzin R, Bayle J, Sánchez-Jerez P, Perez-Ruzafa A, Ramos A (2000) Density dependence in marine protected populations: a review. Environ Conserv 27:144–158

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Ådlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc B 270:2087–2096

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis (MPB-35). Princeton University Press, Princeton

    Google Scholar 

  • Van der Meer J, Beukema JJ, Dekker R (2000) Population dynamics of two marine polychaetes: the relative role of density dependence, predation, and winter conditions. ICES J Mar Sci 57:1488–1494

    Article  Google Scholar 

  • Wilson WH Jr (1983) The role of density dependence in a marine infaunal community. Ecology 295–306

  • WoRMS Editorial Board (2016) World register of marine species. Available from http://www.marinespecies.org at VLIZ. Accessed 26 Aug 2016. doi:10.14284/170

  • Yáñez E, Barbieri M, Silva C, Nieto K, Espíndola F (2001) Climate variability and pelagic fisheries in northern Chile. Prog Oceanogr 49:581–596

    Article  Google Scholar 

Download references

Acknowledgments

We dedicate this work to the memory of Dr. Franklin D. Carrasco, who passed away in December 2015. His passion and dedication to the study of marine benthic ecosystems allowed this pioneering monitoring program to be carried out. He is sorely missed by his many students, friends and colleagues. This study was supported by funds from the Environmental Program of Minera Escondida Ltda., Antofagasta, Chile. FAL was funded by the FONDECYT project 1100729 and UST project TAS O000022624. RAM was supported by a CONICYT Doctoral fellowship and Instituto Milenio de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile. MMR was funded by FONDECYT projects 1140841, 1150664 and 1151094. SAE acknowledges support from CAPES-CONICYT grant FB 0002 (line 4) and FONDECYT grant N° 1160370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio A. Labra.

Additional information

Communicated by D. Fiege

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labra, F.A., Moreno, R.A., Alvarado, S.A. et al. The relative role of ecological interactions and environmental variables on the population dynamics of marine benthic polychaetes. Mar Biodiv 48, 1203–1212 (2018). https://doi.org/10.1007/s12526-016-0569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0569-z

Keywords

Navigation