Skip to main content
Log in

Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Rainfall-induced landslides frequently occur in humid temperate regions worldwide. Research activity in understanding the mechanism of rainfall-induced landslides has recently focused on the probability of slope failure involving non-homogeneous soil profiles. This paper presents probabilistic analyses to assess the stability of unsaturated soil slope under rainfall. The influence of the spatial variability of shear strength parameters on the probability of rainfall-induced slope failure is conducted by means of a series of seepage and stability analyses of an infinite slope based on random fields. A case study of shallow failure located on sandstone slopes in Japan is used to verify the analysis framework. The results confirm that a probabilistic analysis can be efficiently used to qualify various locations of failure surface caused by spatial variability of soil shear strength for a shallow infinite slope failure due to rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • ASTM D2434-68 (2000) Standard test method for permeability of granular soils (constant head). ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D6951 (2003) Standard test method for use of the dynamic cone penetrometer. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Baecher GB, Christian JT (2003) Reliability and statistics in geotechnical engineering. Wiley, New York

    Google Scholar 

  • Caviedes-Voullième D, Garcı P, Murillo J (2013) Verification, conservation, stability and efficiency of a finite volume method for the 1D Richards equation. J Hydrol 480:69–84. doi:10.1016/j.jhydrol.2012.12.008

    Article  Google Scholar 

  • Cho SE (2009) Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics. Eng Geol 105(1):32–43. doi:10.1016/j.enggeo.2008.12.007

    Article  Google Scholar 

  • Cho SE (2012) Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng Geol 133:30–39. doi:10.1016/j.enggeo.2012.02.013

    Article  Google Scholar 

  • Cho SE (2014) Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability. Eng Geol 171:11–20. doi:10.1016/j.enggeo.2013.12.015

    Article  Google Scholar 

  • Cho SE, Lee SR (2002) Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. J Geotech Geoenviron 128(9):756–763. doi:10.1061/(ASCE)1090-0241(2002)128:9(756)

    Article  Google Scholar 

  • Dou HQ, Han TC, Gong XN, Qiu ZY, Li ZN (2015) Effects of the spatial variability of permeability on rainfall-induced landslides. Eng Geol 192:92–100. doi:10.1016/j.enggeo.2015.03.014

    Article  Google Scholar 

  • Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. John Wiley & Sons, New York

    Book  Google Scholar 

  • Fredlund D, Morgenstern NR, Widger R (1978) The shear strength of unsaturated soils. Can Geotech J 15(3):313–321. doi:10.1139/t78-029

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. John Wiley & Sons, New York

    Book  Google Scholar 

  • Geo-Slope (2012) Seepage modeling with SEEP/W. Geo-Slope International Ltd, Canada

    Google Scholar 

  • Griffiths DV, Huang J, Fenton GA (2011) Probabilistic infinite slope analysis. Comput Geotech 38(4):577–584. doi:10.1016/j.compgeo.2011.03.006

    Article  Google Scholar 

  • Han TC, Dou HQ, Gong XN, Zhang J, Ma SG (2014) A rainwater redistribution model to evaluate two-layered slope stability after a rainfall event. Environ Eng Geosci 20(2):163–176. doi:https://doi.org/10.2113/gseegeosci.20.2.163

  • Kanjanakul C, Chub-uppakarn T, Chalermyanont T (2016) Rainfall thresholds for landslide early warning system in Nakhon Si Thammarat. Arab J Geosci 11(9):1–11. doi:10.1007/s12517-016-2614-4

    Google Scholar 

  • Lee LM, Kassim A, Gofar N (2011) Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng Geol 117(1):78–89. doi:10.1016/j.enggeo.2010.10.007

    Article  Google Scholar 

  • Li WC, Lee LM, Cai H, Li HJ, Dai FC, Wang ML (2013) Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Eng Geol 153:105–113. doi:10.1016/j.enggeo.2012.11.017

    Article  Google Scholar 

  • Lu N, Godt J (2008) Infinite slope stability under steady unsaturated seepage conditions. Water Resour Res 44(11):W11404. doi:10.1029/2008WR006976

    Article  Google Scholar 

  • Lu N, Godt JW (2013) Hillslope hydrology and stability. Cambridge University Press, New York

    Book  Google Scholar 

  • Matsushi Y (2006), Triggering mechanisms and rainfall thresholds of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks. Dissertation, University of Tsukuba

  • Matsushi Y, Hattanji T, Matsukura Y (2006) Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology 76(1):92–108. doi:10.1016/j.geomorph.2005.10.003

    Article  Google Scholar 

  • Ng CWW, Shi QA (1998) A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput Geotech 22(1):1–28

    Article  Google Scholar 

  • Pan L, Warrick A, Wierenga PJ (1996) Finite element methods for modeling water flow in variably saturated porous media: numerical oscillation and mass-distributed schemes. Water Resour Res 32(6):1883–1889. doi:10.1029/96WR00753

    Article  Google Scholar 

  • Phoon KK (2008) Reliability-based design in geotechnical engineering: computations and applications. Taylor & Francis, London & New York

    Google Scholar 

  • Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–624. doi:10.1139/t99-038

    Article  Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron 133(12):1532–1543. doi:10.1061/(ASCE)1090-0241(2007)133:12(1532)

    Article  Google Scholar 

  • Ray RL, Jacobs JM, de Alba P (2010) Impacts of unsaturated zone soil moisture and groundwater table on slope instability. J Geotech Geoenviron 136(10):1448–1458. doi:10.1061/ASCEGT.1943-5606.0000357

    Article  Google Scholar 

  • Retheti L (1988) Probabilistic solutions in geotechnics. Developments in Geotechnical Engineering Vol. 46, Elsevier

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333. doi:10.1063/1.1745010

    Google Scholar 

  • Santoso AM, Phoon K-K, Quek S-T (2011) Effects of soil spatial variability on rainfall-induced landslides. Comput Struct 89(11):893–900. doi:10.1016/j.compstruc.2011.02.016

    Article  Google Scholar 

  • Society (1995) Geological Society Engineering Group Working Party Report: the description and classification of weathered rocks for engineering purposes. Q J Eng Geol 28:207–242. doi:10.1144/GSL.QJEG.1970.003.01.01

    Article  Google Scholar 

  • Srivastava A, Babu GS, Haldar S (2010) Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng Geol 110(3):93–101. doi:10.1016/j.enggeo.2009.11.006

    Article  Google Scholar 

  • Van Dam JC, Feddes RA (2000) Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J Hydrol 233(1):72–85. doi:10.1016/s0022-1694(00)00227-4

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. doi:10.2136/sssaj1980.03615995004400050002x

  • Vanmarcke E (1983) Random fields: analysis and synthesis. The MIT Press, Cambridge

    Google Scholar 

  • Wakatsuki T, Tanaka Y, Matsukura Y (2005) Soil slips on weathering-limited slopes underlain by coarse-grained granite or fine-grained gneiss near Seoul, Republic of Korea. Catena 60(2):181–203. doi:10.1016/j.catena.2004.11.003

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the AUN/Seed-Net (JICA) for a Ph.D. sandwich scholarship during his study. The authors would like to thank William L. Dam, Hydrogeologist, who assisted with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suched Likitlersuang.

Ethics declarations

Funding information

This research was supported by the Thailand Research Fund Grant No. RSA-5880023 and the Ratchadaphiseksomphot Endowment Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.S., Likitlersuang, S., Ohtsu, H. et al. Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan. Arab J Geosci 10, 369 (2017). https://doi.org/10.1007/s12517-017-3158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3158-y

Keywords

Navigation