Skip to main content
Log in

QTL mapping for some grain traits in bread wheat (Triticum aestivum L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Grain traits are important agronomic attributes with the market value as well as milling yield of bread wheat. In the present study, quantitative trait loci (QTL) regulating grain traits in wheat were identified. Data for grain area size (GAS), grain width (GWid), factor form density (FFD), grain length-width ratio (GLWR), thousand grain weight (TGW), grain perimeter length (GPL) and grain length (GL) were recorded on a recombinant inbred line derived from the cross of NW1014 × HUW468 at Meerut and Varanasi locations. A linkage map of 55 simple sequence repeat markers for 8 wheat chromosomes was used for QTL analysis by Composite interval mapping. Eighteen QTLs distributed on 8 chromosomes were identified for seven grain traits. Of these, five QTLs for GLWR were found on chromosomes 1A, 6A, 2B, and 7B, three QTLs for GPL were located on chromosomes 4A, 5A and 7B and three QTLs for GAS were mapped on 5D and 7D. Two QTLs were identified on chromosomes 4A and 5A for GL and two QTLs for GWid were identified on chromosomes 7D and 6A. Similarly, two QTLs for FFD were found on chromosomes 1A and 5D. A solitary QTL for TGW was identified on chromosome 2B. For several traits, QTLs were also co-localized on chromosomes 2B, 4A, 5A, 6A, 5D, 7B and 7D. The QTLs detected in the present study may be validated for specific crosses and then used for marker-assisted selection to improve grain quality in bread wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barakat MN, Al-Doss A, Elshafei AA et al (2012) Bulked segregant analysis to detect quantitative trait loci (QTL) related to heat tolerance at grain filling rate in wheat using simple sequence repeat (SSR) markers. Afr J Biotechnol 11:12436–12442

    CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006a) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Breseghello F, Sorrells ME (2006b) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179

    Article  Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2009) The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol Evol 24:103–109

    Article  PubMed  Google Scholar 

  • Cabral AL, Jordan MC, Larson G et al (2018) Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’. PLoS ONE 13(1):e0190681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG et al (1999) Quantitative trait loci associated with kernel traits in soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS et al (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Chastain TG, Ward KJ, Wysocki DJ (1995) Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Sci 35:213–218

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  PubMed Central  CAS  Google Scholar 

  • Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination derived, doubled haploid populations. Mol Gen Genet 249:600–608

    Article  PubMed  CAS  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H et al (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dufour P, Johnsson C, Antoine-Michard S et al (2001) Segregation distortion at marker loci: variation during microspore embryogenesis in maize. Theor Appl Genet 102:993–1001

    Article  CAS  Google Scholar 

  • Egli DE, Ramseur EL, Yu ZW et al (1989) Source-sink alterations affect the number of cells in soybean cotyledons. Crop Sci 29:732–735

    Article  Google Scholar 

  • Elangovan M, Dholakia BB, Rai R et al (2011) Mapping QTL associated with agronomic traits in bread wheat (Triticum aestivum L.). J Wheat Res 3:14–23

    Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Ann Bot (Lond.) 100:903–924

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement: genomics applications in crops, vol 2. Springer, Dordrecht, pp 1–24

    Google Scholar 

  • Gebeyehou G, Knott DR, Baker RJ (1982) Rate and duration of grain filling in durum wheat cultivars. Crop Sci 22:337–340

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S et al (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80

    Article  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Kulwal PL et al (2007) QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci 8:807–814

    Article  Google Scholar 

  • Harushima Y, Kurata N, Yano M et al (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92:145–150

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L et al (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB et al (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Khaliq I, Irshad A, Ahsan M (2008) Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.). Cereal Res Commun 36:65–76

    Article  Google Scholar 

  • Kleinhofs A, Kilian A, SaghaiMaroof MA et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–717

    Article  PubMed  CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P et al (2007) Genetic dissection of grain yield in bread wheat: I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Gaur A et al (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278:187–196

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Kumar J, Singh R et al (2009) QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177:114–122

    Article  CAS  Google Scholar 

  • Kumar A, Mantovani EE, Seetan R et al (2016) Dissection of genetic factors underlying wheat kernel shape and size in an elite × non adapted cross using a high density SNP linkage map. Plant Genome 9:1–22

    Google Scholar 

  • Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Pan ZD (2005) A study on the grain filling characteristic of different weight wheat. Rev China Agric Sci Technol 7:26–30

    Google Scholar 

  • Li M, Wang Z, Liang Z et al (2015) Quantitative trait loci analysis for kernel-related characteristics in common wheat (Triticum aestivum L.). Crop Sci 55:1–9

    Article  Google Scholar 

  • Liu K, Xu H, Liu G et al (2018) QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet 131:839–849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  PubMed  CAS  Google Scholar 

  • Mir RR, Kumar N, Jaiswal V et al (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

    Article  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK et al (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Nguyen AT, Yoshioka M et al (2013) Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci 63:423–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil RM, Tamhankar SA, Oak MD et al (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Article  Google Scholar 

  • Peng J, Korol AB, Fahima T et al (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng J, Ronin Y, Fahima T et al (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Prashant R, Kadoo N, Desale C et al (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K et al (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  PubMed  CAS  Google Scholar 

  • Rasheed A, Xia X, Ogbonnaya F et al (2014) Genome wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Röder MS, Korzun V, Wendehake K et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Sidwell RJ, Smith EL, McNew RW (1976) Inheritance and interrelationships of grain yield and selected yield-related traits in a hard red winter wheat cross. Crop Sci 16:650–654

    Article  Google Scholar 

  • Simmonds J, Scott P, Leverington-Waite M et al (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh K, Ghai M, Garg M et al (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Hao C, Wang L et al (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Lu J, Fan Y et al (2008) Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog Nat Sci 18:825–831

    Article  CAS  Google Scholar 

  • Sun XY, Wu K, Zhao Y et al (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Tanabata T, Shibaya T, Hori K et al (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160:1871–1880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Mir RR, Balyan HS, Gupta PK (2014) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201:367–380

    Article  CAS  Google Scholar 

  • Varshney R, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1294

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang RX, Hai L, Zhang XY et al (2009) QTL mapping for grain filling rate and yield related traits in RILs of the Chinese winter population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Edwards MD, Stuber CW (1987) Evidence for multilocus genetic control of preferential fertilization in maize. Heredity 58:297–302

    Article  PubMed  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Williams K, Munkvold J, Sorrells M (2013) Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 190:99–116

    Article  Google Scholar 

  • Wu Y, Yongcai Fu, Zhao S et al (2016) Clustered primary branch1, a new allele of dwarf11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386

    Article  PubMed  CAS  Google Scholar 

  • Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev 15:85–139

    CAS  Google Scholar 

  • Yamamori M (2009) Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica 165:607–614

    Article  CAS  Google Scholar 

  • Yamamori M, Quynh NT (2000) Diversity effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet 100:32–38

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Xia X, He Z (2014) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107

    Article  CAS  Google Scholar 

  • Zhang G, Wang Y, Guo Y et al (2015) Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. Crop Sci 3:135–144

    Google Scholar 

Download references

Acknowledgements

The authors like to thank The Head, Department of Genetics and Plant Breeding, CCS University (Meerut, India) for providing facilities. PKG and HSB were each awarded the position of INSA Senior Scientist. PKG was also awarded a National Academy of Sciences India (NASI) Senior Scientist Platinum Jubilee Fellowship during the tenure of this research work. SK and VJ each were awarded a JRF/SRF in research projects sanctioned by the Department of Biotechnology, Government of India, New Delhi. Primer aliquots for 17 SSRs provided by Dr. M.S Röder, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Kumar Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Jaiswal, V., Mishra, V.K. et al. QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24, 909–920 (2018). https://doi.org/10.1007/s12298-018-0552-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0552-1

Keywords

Navigation