Skip to main content

Advertisement

Log in

Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Utilizing thermoelectric technology to aerodynamic heat harvesting on the leading-edge is worth noticing in the thermal protection systems. In this paper, a nose-tip model in a supersonic flow field is developed to predict the thermoelectric performance of SiC ceramics structures. The generation performance is numerically investigated in terms of the computational fluid dynamics and the thermal conduction theory. The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2·5–4·5. The generated power reaches 1·708 W/m2at a temperature difference of 757 K at M = 4·5. With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy efficiency would be obtained with the increase of Mach number, with or without considering the Thomson heat. Moreover, under the higher Mach numbers, larger range of output current value is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bardina J E, Huang P G, Coakley T J 1997 AIAA-97-2121

  • Cheng X Z, Xie Z F, Song Y C, Xiao J Y and Y D Wang 2006 J. Appl. Polym. Sci. 99 1188

    Article  Google Scholar 

  • Fujisawa M and Hata T 2008 Renewable Energy 33 309

    Article  Google Scholar 

  • Glass D E 2008 AIAA-2008-2682

  • Gupta M P, Sayer M H, Mukhopadhyay S and Kumar S 2011 IEEE Trans. Compon. Pack. Manuf. Technol. 1 1395

    Article  Google Scholar 

  • Hegde G M, Kulkarni V, Nagaboopathy M and Reddy K P J 2012 Bull. Mater. Sci. 35 341

    Article  Google Scholar 

  • Huang M J, Yen R H and Wang A B 2005 Int. J. Heat Mass Transfer 48 413

    Article  Google Scholar 

  • Ikuko Y, Shoichi K, Koji W, Kimihito H and Genzou M 2008 J. Soc. Mater. Sci. 57 539

    Article  Google Scholar 

  • Jang B K and Sakka Y 2008 J. Alloys Compd. 463 493

    Article  Google Scholar 

  • Kato K and Aruga A 1997 in Functionally graded materials 1996 (Amsterdam: Elsevier Science B.V) pp 605–610

    Google Scholar 

  • Lu H B and Liu W Q 2012a Chinese Phys. B 21 084401

    Article  Google Scholar 

  • Lu H B and Liu W Q 2012b Acta Phys. Sin. 61 064703 (in Chinese)

    Google Scholar 

  • Min G, Rowe D M and Kontostavlakis K 2004 J. Phys. D: Appl. Phys. 37 1301

    Article  Google Scholar 

  • Nagalingam R, Sundaram S, Stanly B and Retnam J 2010 Bull. Mater. Sci. 33 525

    Article  Google Scholar 

  • Nakatsugawa H and Nagasawa K 2009 J. Electron. Mater. 38 1387

    Article  Google Scholar 

  • O’Brien R C 2008 J. Nucl. Mater. 377 506

    Article  Google Scholar 

  • Prabhu Swamy N R, Ramesh C S and Chandrashekar T 2010 Bull. Mater. Sci. 33 49

    Article  Google Scholar 

  • Rowe D M 1995 CRC Handbook of Thermoelectrics (1st Ed) (Boca Raton: CRC Press)

    Book  Google Scholar 

  • Rowe D M 2005 Thermoelectric Handbook: Micro to Nano (1st Ed) (Boca Raton: CRC Press)

    Book  Google Scholar 

  • Saravanan S, Jagadeesh G and Reddy K P J 2009 J. Spacecraft Rockets 46 557

    Google Scholar 

  • Stokes C D 2010 4th IEEE Nanotechnology Materials and Devices Conference, NMDC2010, Monterey, CA, USA October 12–15, p. 154

  • Tao W Q 2001 Numerical Heat Transfer (2nd Ed) (Xi’an: Xi’an Jiaotong University Press) (in Chinese)

    Google Scholar 

  • van Leer B 1997 J. Comput. Phys. 135 229

    Article  Google Scholar 

  • Wei W and Li J W 2007 Scr. Mater. 57 1081

    Article  Google Scholar 

  • Wilcox D C 1993 Turbulence modelling for CFD (Canada: DWC Industries)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from theNational Natural Science Foundation of China (No. 50802114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XIAO-YI HAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HAN, XY., WANG, J. & CHENG, HF. Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges. Bull Mater Sci 37, 127–132 (2014). https://doi.org/10.1007/s12034-014-0613-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0613-1

Keywords

Navigation