Skip to main content
Log in

Synthesis and Characterization of Ferromagnetic Fe3O4–ZnO Hybrid Core–Shell Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Room-temperature synthesis of multifunctional core–shell nanostructures with iron oxide (Fe3O4) core and zinc oxide (ZnO) shell is described. High-resolution transmission electron microscopy revealed the occurrence of heteroepitaxial growth of a ZnO shell over the iron oxide nanoparticle core. The formation of the core–shell nanostructure was also evidenced by x-ray diffraction and x-ray photoelectron spectroscopy analyses. The core Fe3O4 nanoparticles exhibited superparamagnetic behavior at room temperature in an externally applied magnetic field. However, magnetic measurements of the core–shell nanoparticles revealed ferromagnetic behavior, originating from defect-induced ferromagnetism in the ZnO shell. The prepared core–shell nanoparticles also exhibited strong photoresponse while retaining ferromagnetic behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Zhang, B. Wang, G. Williams, C.B. White, J. Quan, and H. Nie, Mater. Res. Bull. 48, 3058 (2013).

    Article  Google Scholar 

  2. W. Lu, Y. Shen, A. Xie, X. Zhang, and W. Chang, J. Phys. Chem. C 114, 4846 (2010).

    Article  Google Scholar 

  3. X. You, R. He, F. Gao, J. Shao, B. Pan, and D. Cui, Nanotechnology 18, 035701 (2007).

    Article  Google Scholar 

  4. V. Salgueirino-Meciera, M.A. Correa-Duarte, M. Spasova, L.M. Liz-Marzan, and M. Farle, Adv. Funct. Mater. 16, 509 (2006).

    Article  Google Scholar 

  5. J. Xie, C. Xu, Z. Xu, Y. Hou, K.L. Young, S.X. Wang, N. Pourmand, and S. Sun, Chem. Mater. 18, 5401 (2006).

    Article  Google Scholar 

  6. Z.L. Yang, D.Y. Hua, Z. Ling, G.U.H. Chen, and C. Chin, Phys. Lett. 24, 483 (2007).

    Google Scholar 

  7. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, Adv. Mater. 22, 2729 (2010).

    Article  Google Scholar 

  8. A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and M.A. Meijrink, J. Lumin. 90, 123 (2000).

    Article  Google Scholar 

  9. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z.L. Wang, Nano Lett. 8, 3035 (2008).

    Article  Google Scholar 

  10. C.Y. Jiang, X.W. Sun, G.Q. Lo, and D.L. Kwong, Appl. Phys. Lett. 90, 263501 (2001).

    Article  Google Scholar 

  11. Y. Liu, Y. Zhang, S. Wang, L. Pope, and W. Chen, Appl. Phys. Lett. 92, 143901 (2008).

    Article  Google Scholar 

  12. C. Hanley, J. Layne, A. Punnoose, K.M. Reddy, I. Coombs, A. Coombs, K. Feris, and D. Wingett, Nanotechnology 19, 295103 (2008).

    Article  Google Scholar 

  13. J. Joseph, K.K. Nishad, M. Sharma, D.K. Gupta, R.R. Singh, and R.K. Pandey, Mater. Res. Bull. 47, 1471 (2012).

    Article  Google Scholar 

  14. X.Y. Chu, X. Hong, X.T. Zhang, P. Zou, and Y.C. Liu, J. Phys. Chem. C 112, 15980 (2008).

    Article  Google Scholar 

  15. Q. Wang, Y. Liu, C. Lin, and H. Yan, Nanotechnology 18, 405604 (2007).

    Article  Google Scholar 

  16. A. Ito, M. Shinkai, H. Honda, and T. Kobayasi, J. Biosci. Bioeng. 100, 1 (2005).

    Article  Google Scholar 

  17. M. Mangani, L. Gulluzi, and I.J. Bruce, J. Nanosci. Nanotechnol. 6, 2311 (2006).

    Google Scholar 

  18. Y.M. Jun, J.S. Choi, and J. Cheon, Chem. Commun. 12, 1203 (2007).

    Article  Google Scholar 

  19. H. Gu, K. Xu, and B. Xu, Chem. Commun. 7, 941 (2006).

    Article  Google Scholar 

  20. X. Lu, X. Zhang, Y. Ni, Q. Zhang, and J. Chen, Biosens. Bioelectron. 24, 93 (2008).

    Article  Google Scholar 

  21. W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, T. Tan, N. Huang, A. Radiman, R. Abd-shukor, M.A.A. Hamid, and C. Chia, J. Phys. Chem. C 114, 8212 (2010).

    Article  Google Scholar 

  22. K.W. Kwon, B.H. Lee, and M. Shim, Chem. Mater. 18, 6357 (2006).

    Article  Google Scholar 

  23. D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and Photoelectron Spectroscopy (Wiley, 1990), Appendix-6.

  24. S.J. Kang and Y.H. Joung, Appl. Surf. Sci. 253, 7330 (2007).

    Article  Google Scholar 

  25. K.K. Nishad, J. Joseph, N. Tiwari, R. Kurchania, and R.K. Pandey, Sci. Adv. Mater. 7, 1368 (2015).

    Article  Google Scholar 

  26. P.T. Hsieh, Y.C. Chen, K.S. Kao, and C.M. Wang, Appl. Phys. A 90, 317 (2008).

    Article  Google Scholar 

  27. Y.Y. Tay, S. Li, C.Q. Sun, and P. Chen, Appl. Phys. Lett. 88, 173118 (2006).

    Article  Google Scholar 

  28. A. Kelly, G.W. Groves, and P. Kidd, Crystallography and Crystal Defects (New York: Wiley, 2000), p. 289.

    Google Scholar 

  29. D.M. Sherman and T.D. Waite, Am. Mineral. 70, 1262 (1985).

    Google Scholar 

  30. H.J. Schugar, G.R. Rossman, J. Thibeault, and H.B. Gray, Chem. Phys. Lett. 6, 26 (1970).

    Article  Google Scholar 

  31. Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, and B.S. Zou, Phys. Rev. B 71, 125411 (2005).

    Article  Google Scholar 

  32. Y. Matsumoto, J. Solid State Electron. 126, 227 (1996).

    Article  Google Scholar 

  33. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, Adv. Mater. 22, 2729 (2010).

    Article  Google Scholar 

  34. T. Mokari, C.G. Sztrum, A. Salant, E. Rabani, and U. Banin, Nat. Mater. 4, 855 (2005).

    Article  Google Scholar 

  35. M. Berciu and R.N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001).

    Article  Google Scholar 

  36. N. Sanchez, S. Gallego, and M.C. Munoz, Phys. Rev. Lett. 101, 067206 (2008).

    Article  Google Scholar 

  37. X. Xu, C. Xu, J. Dai, J. Hu, F. Li, and S. Zhang, J. Phys. Chem. C 116, 8813 (2012).

    Article  Google Scholar 

  38. K.K. Nishad and R.K. Pandey, Mater. Sci. Eng. B 178, 1380 (2013).

    Article  Google Scholar 

  39. J.M.D. Coey, Phys. Rev. Lett. 27, 1140 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Pandey.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishad, K.K., Tiwari, N. & Pandey, R.K. Synthesis and Characterization of Ferromagnetic Fe3O4–ZnO Hybrid Core–Shell Nanoparticles. J. Electron. Mater. 47, 3440–3450 (2018). https://doi.org/10.1007/s11664-018-6171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6171-3

Keywords

Navigation