Skip to main content
Log in

Transient Evolution of Nonmetallic Inclusions During Calcium Treatment of Molten Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The transient evolution of nonmetallic inclusions after calcium addition in pipeline steels was investigated with a vacuum induction furnace. Samples were taken at 1, 5, 10, 15, and 20 minutes after calcium treatment in both MgO and Al2O3 crucibles. It was found that the total oxygen and the number density of inclusions were increased during calcium modification, while they were dropped to a low level in the last tapped sample. Due to the evaporation of calcium, inclusions were transferred from CaO-CaS to Al2O3-CaO-CaS, and then to Al2O3-CaO. The decomposition of CaS was highly dependent on the decrease of the total calcium and the increase of the total oxygen in the steel. Thermodynamic calculation was performed to predict the composition of inclusions considering the effect of the total oxygen and the total calcium and was validated by measurement. The relationship between the content of Al2O3 in inclusions and the ratio of the total calcium and the total oxygen in steels was measured and compared with the calculated one using thermodynamic software Factsage 7.0. The mass-transfer coefficient of the dissolved calcium in the steel was estimated in the range of 2.35 × 10−4 to 3.53 × 10−4 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. 1. C.L. Briant: Mater. Manuf. Processes, 2000, vol. 15, pp. 155–56.

    Article  Google Scholar 

  2. 2. G.M. Faulring, J.W. Farrell, and D.C. Hilty: Iron Steelmaker, 1980, vol. 7, pp. 14–20.

    Google Scholar 

  3. 3. J. Lamut, J. Falkus, B. Jurjevec, and M. Knap: Arch. Metall. Mater., 2012, vol. 57, pp. 319–24.

    Article  Google Scholar 

  4. 4. N. Bannenberg: Steelmaking Conf. Proc., 1995, vol. 78, pp. 457–63.

    Google Scholar 

  5. 5. R. Inoue and S. Hideaki: Iron Steel Inst. Publ., 1994, vol. 65, pp. 403–09.

    Google Scholar 

  6. 6. R.V. Vainala, L.E.K. Holappa, and P.H.J. Karvonen: J. Mater. Process. Technol., 1995, vol. 53, pp. 453–65.

    Article  Google Scholar 

  7. 7. T. Ototani: Calcium Clean Steel, Springer-Verlag, New York, NY, 1986.

    Book  Google Scholar 

  8. 8. T. Shiraiwa and N. Fujino: Tetsu-to-Hagané, 1971, vol. 57, pp. 1990–2009.

    Article  Google Scholar 

  9. 9. D.Z. Lu, G.A. Irons, and W.K. Lu: Ironmak. Steelmak., 1994, vol. 21, pp. 362–71.

    Google Scholar 

  10. 10. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1131–39.

    Article  Google Scholar 

  11. 11. S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.

    Article  Google Scholar 

  12. 12. H.M. Pielet and D. Bhattacharya: Metall. Mater. Trans. B, 1984, vol. 15B, pp. 547–62.

    Article  Google Scholar 

  13. 13. A. Koyanagi, T. Sakajo, and T. Karasudani: Tetsu-to-Hagané, 1971, vol. 57, pp. 2128–40.

    Article  Google Scholar 

  14. 14. T. Kusakawa, Y. Watanabe, H. Okumura, and T. Takebe: Tetsu-to-Hagané, 1974, vol. 60, pp. 45–57.

    Article  Google Scholar 

  15. 15. T. Ototani, Y. Kataura, and T. Degawa: Tetsu-to-Hagané, 1975, vol. 61, pp. 2167–81.

    Article  Google Scholar 

  16. 16. T. Ikeda, N. Fujino, and H. Ichihashi: Tetsu-to-Hagané, 1980, vol. 66, pp. 2040–49.

    Article  Google Scholar 

  17. 17. K. Larsen and R.J. Fruehan: ISS Trans., 1991, vol. 12, pp. 125–32.

    Google Scholar 

  18. 18. V. Presern, B. Korousic, and J.W. Hastie: Steel Res. Int., 1991, vol. 62, pp. 289–95.

    Article  Google Scholar 

  19. 19. G. Ye, P. Jonsson, and T. Lund: ISIJ Int., 1996, vol. 36, pp. S105–S108.

    Article  Google Scholar 

  20. 20. Y. Kusano, Y. Kawauchi, M. Wajima, K. Sugawara, M. Yoshida, and H. Hayashi: ISIJ Int., 1996, vol. 36, pp. S77–S80.

    Article  Google Scholar 

  21. 21. C.E. Cicutti, J. Madias, and J.C. Gonzalez: Ironmak. Steelmak., 1997, vol. 24, pp. 155–59.

    Google Scholar 

  22. 22. K. Mizuno, H. Todoroki, M. Noda, and T. Tohge: Iron Steelmaker, 2001, vol. 28, pp. 93–101.

    Google Scholar 

  23. 23. P. Rozanski and J. Paduch: Arch. Metall., 2003, vol. 48, pp. 285–307.

    Google Scholar 

  24. 24. L. Holappa, M. Hamalainen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    Article  Google Scholar 

  25. 25. J.H. Park, S.B. Lee, and D.S. Kim: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 67–73.

    Article  Google Scholar 

  26. 26. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.

    Article  Google Scholar 

  27. 27. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 711–19.

    Article  Google Scholar 

  28. 28. N. Verma, P.C. Pistorius, R.J. Fruehan et al.: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720–29.

    Article  Google Scholar 

  29. 29. M. Numata and Y. Higuchi: Tetsu-to-Hagané, 2011, vol. 97, pp. 259–65.

    Article  Google Scholar 

  30. 30. M. Humata and Y. Higuchi: Tetsu-to-Hagané, 2011, vol. 97, pp. 1–6.

    Article  Google Scholar 

  31. 31. M. Numata and Y. Higuchi: ISIJ Int., 2012, vol. 52, pp. 2013–18.

    Article  Google Scholar 

  32. 32. S. Yang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  33. 33. W. Yang, H. Duan, L. Zhang, and Y. Ren: JOM, 2013, vol. 65, pp. 1173–80.

    Article  Google Scholar 

  34. 34. J. Guo, S. Cheng, Z. Cheng, and L. Xin: Steel Res. Int., 2013, vol. 84, pp. 545–53.

    Article  Google Scholar 

  35. 35. Y. Ren, L. Zhang, and S. Li: ISIJ Int., 2014, vol. 54, pp. 2772–79.

    Article  Google Scholar 

  36. 36. G. Yang and X. Wang: ISIJ Int., 2015, vol. 55, pp. 126–33.

    Article  Google Scholar 

  37. 37. G. Yang, X. Wang, F. Huang, P. Wei, and X. Hao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 145–54.

    Article  Google Scholar 

  38. 38. D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ Int., 2015, vol. 55, pp. 2115–24.

    Article  Google Scholar 

  39. 39. W.V. Bielefeldt and A.C.F. Vilela: Steel Res. Int., 2015, vol. 86, pp. 375–85.

    Article  Google Scholar 

  40. 40. W.V. Bielefelds, A.C.F. Vilela, C.A.M. Moraes, and P.C. Fernandes: Steel Res. Int., 2007, vol. 78, pp. 857–62.

    Article  Google Scholar 

  41. Y. Watanabe and T. Kusakawa: Tetsu-to-Hagané, 1967, vol. 53.

  42. 42. Y. Higuchi, M. Numata, S. Fukagawa, and K. Shinme: ISIJ Int., 1996, vol. 36, pp. S151–S154.

    Article  Google Scholar 

  43. 43. Y.I. Ito, M. Suda, Y. Kato, H. Nakato, and K.I. Sorimachi: ISIJ Int., 1996, vol. 36, pp. S148–S150.

    Article  Google Scholar 

  44. 44. M. Numata, Y. Higuchi, and S. Fukagawa: Tetsu-to-Hagané, 1998, vol. 84, pp. 159–64.

    Article  Google Scholar 

  45. 45. Y. Ito, S. Nara, Y. Kato, and M. Suda: Tetsu-to-Hagané, 2007, vol. 93, pp. 355–61.

    Article  Google Scholar 

  46. 46. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359–66.

    Article  Google Scholar 

  47. 47. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401–10.

    Article  Google Scholar 

  48. 48. N. Yuge, K. Hanazawa, K. Nishikawa, and H. Terashima: Tetsu-to-Hagané, 1997, vol. 61, pp. 1086–93.

    Google Scholar 

  49. 49. W. Dong, X. Peng, D. Jiang, Y. Tan, Q. Wang, and G. Li: Mater. Sci. Forum, 2011, vol. 675, pp. 41–44.

    Article  Google Scholar 

  50. 50. T. Ikeda and M. Maeda: ISIJ Int., 1992, vol. 32, pp. 635–42.

    Article  Google Scholar 

  51. 51. Y. Jian, K. Okumura, M. Kuwabara, and M. Sana: ISIJ Int., 2002, vol. 42, pp. 685–93.

    Article  Google Scholar 

  52. 52. G.A. Irons and R.I.L. Guthrie: Metall. Mater. Trans. B, 1981, vol. 12B, pp. 755–67.

    Article  Google Scholar 

  53. 53. M. Hino, S.B. Wang, T. Nagasaka, and S. Banya: ISIJ Int., 1994, vol. 34, pp. 491–97.

    Article  Google Scholar 

  54. 54. O. Volkova, H.-P. Heller, and D. Janke: ISIJ Int., 2003, vol. 43, pp. 1724–32.

    Article  Google Scholar 

  55. 55. H. Matsuura, C. Wang, G. Wen, and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265–74.

    Article  Google Scholar 

  56. 56. M.A. Van Ende, M. Guo, R. Dekkers, M. Burty, J. Van Dyck, P.T. Jones, B. Blanpain, and P. Wollants: ISIJ Int., 2009, vol. 49, pp. 1133–40.

    Article  Google Scholar 

  57. 57. C. Wang, N.T. Nuhfer, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 1022–34.

    Article  Google Scholar 

  58. 58. C. Wang, N.T. Nuhfer, and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 1005–21.

    Article  Google Scholar 

  59. 59. C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi, and S. Sridhar: ISIJ Int., 2011, vol. 51, pp. 375–81.

    Article  Google Scholar 

  60. 60. D. Yang, M. Jiang, S. Lei, X. Wang, and W. Wang: J. Iron Steel Res. Int., 2014, vol. 26, pp. 12–15.

    Article  Google Scholar 

  61. 61. J. Yang, Y. Wang, X. Ruan, R. Wang, K. Zhu, Z. Fan, Y. Wang, C. Li, and X. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1365–75.

    Article  Google Scholar 

  62. 62. Y. Kwon, J. Choi, and S. Sridhar: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 814–24.

    Article  Google Scholar 

  63. 63. H. Goto, M. Ken-Ichi, and K. Tanaka: ISIJ Int., 1995, vol. 35, pp. 286–91.

    Article  Google Scholar 

  64. 64. S. Wang, L. Zhang, Y. Tian, Y. Li, and H. Ling: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1915–35.

    Article  Google Scholar 

  65. 65. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.

    Article  Google Scholar 

  66. 66. Y. Luo, A. Conejo, L. Zhang, L. Chen, and L. Cheng: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2348–60.

    Article  Google Scholar 

  67. 67. H. Goto, K.-I. Miyazawa, W. Yamada, and K. Tanaka: ISIJ Int., 1995, vol. 35, pp. 708–14.

    Article  Google Scholar 

  68. 68. H. Goto, K.-I. Miyazawa, K.-I. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414–19.

    Article  Google Scholar 

  69. 69. N. Verma, M. Lind, P. Pistorius, R. Fruehan, and M. Potter: Iron Steel Technol., 2010, vol. 7, pp. 189–97.

    Google Scholar 

  70. 70. L.E. Rohde, A. Choudhury, and M. Wahlster: Arch Eisenhuttenwes., 1971, vol. 42, pp. 165–74.

    Google Scholar 

  71. 71. J. Xu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1217–27.

    Article  Google Scholar 

  72. 72. Y.T. Guo, S.P. He, G.J. Chen, and Q. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2549–57.

    Article  Google Scholar 

  73. 73. G. Xu, Z. Jiang, and Y. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2411–20.

    Article  Google Scholar 

  74. E.M. Williams, R.W. McCarthy, S.A. Levy, and G.K. Sigworth: Essen. Read. Light Met., 2000, pp. 71–79.

Download references

Acknowledgments

The authors are grateful for support from the National Key R&D Program of China (2017YFB0304000 and 2017YFB0304001), the National Science Foundation China (Grant Nos. 51725402, 51504020, and 51704018), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1, and FRF-TP-17-039A1), the Guangxi Key Research and Development Plan (Grant No. AB17129006), the National Postdoctoral Program for Innovative Talents (Grant No. BX201700028), the Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), and the High Quality Steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2), School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted July 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, Y., Zhang, Y. et al. Transient Evolution of Nonmetallic Inclusions During Calcium Treatment of Molten Steel. Metall Mater Trans B 49, 1841–1859 (2018). https://doi.org/10.1007/s11663-018-1289-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1289-5

Keywords

Navigation