Skip to main content

Advertisement

Log in

Energy vehicle routing problem for differently sized and powered vehicles

  • Original Paper
  • Published:
Journal of Business Economics Aims and scope Submit manuscript

Abstract

Electric vehicles (EVs) and combustion-powered vehicles (CVs) differ substantially with respect to several characteristic factors that have major impacts on vehicle routing. EVs are more energy efficient than CVs, but they have a shorter driving range, and compared to CVs with the same gross weight, they have a lower payload. In this paper, various vehicle fleets with differently sized EVs and CVs are considered for vehicle routing. First, EVs are opposed to CVs. Second, the effect of increasing the battery capacity of EVs is investigated. Third, the impact of introducing recharge stations for EVs is analyzed. Finally, the characteristics of mixed fleets are investigated. The computational results are generated by solving a MIP formulation of the introduced Energy Vehicle Routing Problem with Time Windows, Recharge Stations and Vehicle Classes (EVRPTW-R-VC) by means of a commercial solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bektaş T, Laporte G (2011) The pollution-routing problem. Transp Res Part B Methodol 45(8):1232–1250

    Article  Google Scholar 

  • Berndt S (2016) Max mnller spedition ist vorreiter: Erster elektro-lkw in süddeutschland. myLogistics URL:mylogistics.net/2016/12/02/max-mueller-spedition-ist-vorreiter-erster-elektro-lkw-in-sueddeutschland/. Accessed 23 Mar 2018

  • Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6(1):80–91

    Article  Google Scholar 

  • Demir E, Bektaş T, Laporte G (2014) A review of recent research on green road freight transportation. Eur J Oper Res 237(3):775–793

    Article  Google Scholar 

  • Desaulniers G, Errico F, Irnich S, Schneider M (2016) Exact algorithms for electric vehicle-routing problems with time windows. Oper Res 64(6):1388–1405

    Article  Google Scholar 

  • E-Force One AG (2016) Eforce 18-44t elkw. http://eforce.ch/wp/wp-content/uploads/2013/06/E44_Fact_Sheet_E.pdf. Accessed 23 Mar 2018

  • Eglese R, Bektaş T (2014) Green vehicle routing. In: Toth P, Vigo D (eds) Vehicle routing: problems, methods and applications (2nd edition), Philadelphia: MOS-SIAM Series on Optimization 18, chap 15, pp 437–458, 10.1137/1.9781611973594.ch15

  • Erdoğan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48(1):100–114

    Article  Google Scholar 

  • Figliozzi M (2010) Vehicle routing problem for emissions minimization. Transp Res Rec J Transp Res Board 2197(1):1–7

    Article  Google Scholar 

  • Goeke D, Schneider M (2015) Routing a mixed fleet of electric and conventional vehicles. Eur J Oper Res 245(1):81–99

    Article  Google Scholar 

  • Hacker F, von Waldenfels R, Mottschall M (2015) Wirtschaftlichkeit von elektromobilität in gewerblichen anwendungen. betrachtung von gesamtnutzungskosten, ökonomischen potenzialen und möglicher \(co_2\)-minderung. IKT für Elektromobilität

  • Hiermann G, Puchinger J, Ropke S, Hartl RF (2016) The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Eur J Oper Res 252(3):995–1018. https://doi.org/10.1016/j.ejor.2016.01.038

    Article  Google Scholar 

  • Kara İ, Kara BY, Yetis MK (2007) Energy minimizing vehicle routing problem. In: Dress A, Xu Y, Zhu B (eds) Combinatorial optimization and applications. COCOA 2007. Lecture notes in computer science, vol 4616. Springer, Berlin, Heidelberg

  • Keskin M, Çatay B (2016) Partial recharge strategies for the electric vehicle routing problem with time windows. Transp Res Part C 65:111–127

    Article  Google Scholar 

  • Koç Ç, Bektaş T, Jabali O, Laporte G (2014) The fleet size and mix pollution-routing problem. Transp Res Part B Methodol 70:239–254

    Article  Google Scholar 

  • Koç Ç, Bektaş T, Jabali O, Laporte G (2016) Thirty years of heterogeneous vehicle routing. Eur J Oper Res 249(1):1–21. https://doi.org/10.1016/j.ejor.2015.07.020

    Article  Google Scholar 

  • Kopfer H, Schopka K (2016) Vehicle routing for fleets with electric- and combustion-powered vehicles. In: Proceedings of 7th International Conference on Computational Logistics

  • Kopfer HW, Kopfer H (2013) Emissions minimization vehicle routing problem in dependence of different vehicle classes. In: Kreowski HJ, Scholz-Reiter B, Thoben KD (eds) Dynamics in logistics. Lecture notes in logistics. Springer, Berlin Heidelberg, pp 49–58

    Google Scholar 

  • Kopfer HW, Schönberger J, Kopfer H (2014) Reducing greenhouse gas emissions of a heterogeneous vehicle fleet. Flex Serv Manuf J 26(1–2):221–248. https://doi.org/10.1007/s10696-013-9180-9

    Article  Google Scholar 

  • Kraftfahrt-Bundesamt, (2017) Fahrzeugzulassungen (fz) - bestand an kraftfahrzeugen nach umwelt-merkmalen. Kraftfahrt-Bundesamt, Flensburg

  • Kwon YJ, Choi YJ, Lee DH (2013) Heterogeneous fixed fleet vehicle routing considering carbon emission. Transp Res Part D Transp Environ 23:81–89

    Article  Google Scholar 

  • Lin C, Choy K, Ho G, Chung S, Lam H (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41(4):1118–11138. https://doi.org/10.1016/j.eswa.2013.07.107

    Article  Google Scholar 

  • Orten (2016) URL: http://www.electric-trucks.de/de/umruestung/lkw-7-5t.html. Accessed 15 June 2016

  • oV (2015) Wie machen sich ihre Elektro-LKW in der Praxis? Verkehrs Rundschau Verlag Heinrich Vogel 46

  • oV (2016) Elektrolaster mit modularem Batteriekonzept. Das Messemagazin IAA SPOT 66

  • Pelletier S, Jabali O, Laporte G (2014) Goods distribution with electric vehicles: Review and research perspectives. Tech. rep., Technical Report CIRRELT-2014-44, CIRRELT, Montréal, Canada

  • Pelletier S, Jabali O, Laporte G (2017) Battery degradation and behaviour for electric vehicles: review and numerical analyses of several models. Transp Res Part B 103:10587

    Article  Google Scholar 

  • Pieringer M (2015) Automotive: BMW und Scherm nehmen Elektro-Lkw in Betrieb. Logistik Heute URL: http://www.logistik-heute.de/Logistik-News-Logistik-Nachrichten/Markt-News/13255/40-Tonnen-E-Lkw-pendelt-zwischen-Scherm-Logistikzentrum-und-BMW-Werk-Muenche. Accessed 24 Nov 2016

  • Sassi O, Cherif WR, Oulamara A (2014) Vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs. HAL archives-ouvertes

  • Schmied M, Knörr W (2013) Berechnung von Treibhausgasemissionen in Spedition und Logistik gemäß DIN EN 16258. Edited by Deutscher Speditions-und Logistikverband eV Öko-Institut eV

  • Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and recharging stations. Transp Sci 48(4):500–520

    Article  Google Scholar 

  • Scott C, Urquhart N, Hart E (2010) Influence of topology and payload on co2 optimised vehicle routing. In: Di Chio C, Brabazon A, Di Caro G, Ebner M, Farooq M, Fink A, Grahl J, Greenfield G, Machado P, O’Neill M, Tarantino E, Urquhart N (eds) Applications of Evolutionary Computation, vol 6025. Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 141–150

    Chapter  Google Scholar 

  • Suzuki Y (2011) A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp Res Part D Transp Environ 16(1):73–77. https://doi.org/10.1016/j.trd.2010.08.003

    Article  Google Scholar 

  • Toth P, Vigo D (2014) Vehicle routing: problems, methods, and applications, vol 18. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  • Vornhusen B, Kopfer H (2015) Emission vehicle routing problem with split delivery and a heterogeneous vehicle fleet. In: Corman F, Voß S, Negenborn R (eds) In: Proceedings of 6th International Conference on Computational Logistics, Springer International Publishing, LNCS 9335, pp 76–90

  • Wang X, Kopfer H, Gendreau M (2014) Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur J Oper Res 237(3):1133–1141. https://doi.org/10.1016/j.ejor.2014.02.056

    Article  Google Scholar 

  • Wang YW, Lin CC (2013) Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transp Res Part E 58:76–87

    Article  Google Scholar 

  • Wiki (2016) URL: https://de.wikipedia.org/wiki/Lithium-Eisenphosphat-Akkumulator#cite_note-18. Accessed 15 June 2016

  • Xiao Y, Zhao Q, Kaku I, Xu Y (2012) Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput Oper Res 39(7):1419–1431

    Article  Google Scholar 

  • Zhang J, Zhang Y, Xue W, Li J (2015) Vehicle routing problem with fuel consumption and carbon emission. Int J Prod Econ 170(4):234–242. https://doi.org/10.1016/j.ijpe.2015.09.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Vornhusen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopfer, H., Vornhusen, B. Energy vehicle routing problem for differently sized and powered vehicles. J Bus Econ 89, 793–821 (2019). https://doi.org/10.1007/s11573-018-0910-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11573-018-0910-z

Keywords

JEL Classification

Navigation