Skip to main content
Log in

An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report the design, fabrication, and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor >45% is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maier S (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  2. Maier S, Atwater H (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  3. Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  4. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Berlin

  5. Ebbesen TW, Genet C, Bozhevolnyi S (2008) Surface-plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  6. Devaux E, Ebbesen TW, Weeber J-C, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83:4936–4938

    Article  CAS  Google Scholar 

  7. Cleary JW, Medhi G, Peale RE, Buchwald WR (2010) Long-wave infrared surface plasmon grating coupler. Appl Opt 49:3102–3110

    Article  Google Scholar 

  8. Ghoshal A, Kik PG (2010) Frequency dependent power efficiency of a nanostructured surface plasmon coupler. Phys Status Solidi RRL 4:280

    Article  CAS  Google Scholar 

  9. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Google Scholar 

  10. Hecht B, Bielefeld H, Novotny L et al (1996) Local excitation, scattering, and interference of surface plasmons. Phys Rev Lett 77:1889–1892

    Article  CAS  Google Scholar 

  11. Tian J, Yu S, Yan W, Qiu M (2009) Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl Phys Lett 95

  12. Ropers C, Neacsu CC, Elsaesser T et al (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7:2784–2788

    Article  CAS  Google Scholar 

  13. Andkjær J, Nishiwaki S, Nomura T, Sigmund O (2010) Topology optimization of grating couplers for the efficient excitation of surface plasmons. J Opt Soc Am B 27:1828–1832

    Article  Google Scholar 

  14. Lu J, Petre C, Yablonovitch E (2007) Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag–SiO2 interface. J Opt Soc Am B 24:2268–2272

    Article  CAS  Google Scholar 

  15. Rotenberg N, Sipe JE (2011) Analytic model of plasmonic coupling: surface relief gratings. Phys Rev B: Condens Matter 83:045416

    Article  Google Scholar 

  16. Ceperley DP, Neureuther AR (2008) Engineering surface plasmon grating couplers through computer simulation. J Vac Sci Technol B 26:2183–2187

    Article  CAS  Google Scholar 

  17. Chen C, Berini P (2009) Broadside excitation of long-range surface plasmons via grating coupling. IEEE Photonics Technol Lett 21:1831–1833

    Article  CAS  Google Scholar 

  18. Lee KG, Park Q-H (2005) Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys Rev Lett 95:103902

    Article  CAS  Google Scholar 

  19. Leveque G, Martin OJF (2005) Numerical study and optimization of a diffraction grating for surface plasmon excitation. Proc SPIE Int Soc Opt Eng 5927:592713-1–592713-9

    Google Scholar 

  20. Wang J, Chen X, Lu W (2009) High-efficiency surface plasmon polariton source. J Opt Soc Am B 26:B139–B142

    Article  CAS  Google Scholar 

  21. Baudrion A-L, Leon-Perez F, Mahboub O et al (2008) Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt Express 16:3420–3429

    Article  Google Scholar 

  22. Radko IP, Bozhevolnyi SI, Brucoli G et al (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17:7228–7232

    Article  CAS  Google Scholar 

  23. Ditlbacher H, Krenn JR, Hohenau A et al (2003) Efficiency of local light-plasmon coupling. Appl Phys Lett 83:3665–3667

    Article  CAS  Google Scholar 

  24. Egorov D, Dennis BS, Blumberg G (2004) Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys Rev B 033404

  25. Hooper IR, Sambles JR (2002) Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys Rev B 65:165432

    Article  Google Scholar 

  26. Palik ED (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NIST-CNST NanoFab, NIST Division 637 FIB-SEM, and the NIST-CNST/UMD-Nanocenter Cooperative Agreement. We also thank Prof. Igor Griva for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Aksyuk.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Figure S1 showing SPP decay length on gratings at 675 nm. Figure S2 showing the product of input and output grating efficiencies at 675 nm. Figure S3 showing input grating intensity profiles at 675 nm. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koev, S.T., Agrawal, A., Lezec, H.J. et al. An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons. Plasmonics 7, 269–277 (2012). https://doi.org/10.1007/s11468-011-9303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9303-7

Keywords

Navigation