Skip to main content
Log in

On the Capacity of Underlay Multihop Cognitive Relaying Over Generalized-K Composite Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is one of the candidate enabling technologies for future wireless communication systems. This paper is devoted to analyze the capacity of underlay cognitive multihop relaying over independent and non-identically distributed generalized-K fading channels. In doing so, we derive upper and lower-bounded expressions for the ergodic capacity and the outage probability of the secondary user (SU), respectively. By using these expressions, new insights in the performance of the cognitive multihop amplify-and-forward relaying are revealed. The obtained results provide interesting details on the joint effect of shadowing and multipath fading on the capacity of the SU in relay-assisted underlay CR networks. The analytical results are verified by Monte-Carlo simulations for different fading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FCC. (2002). Spectrum policy task force report. Report of Federal Communications Commission. Technical Report 02–135.

  2. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radiosmore personal. IEEE Transactions on Information Theory, 6(4), 13–18.

    Google Scholar 

  3. Guizani, M. (2006). Wireless communications systems and networks. New York: Springer.

    Google Scholar 

  4. Van Der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  6. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  MathSciNet  MATH  Google Scholar 

  7. Song, S., Son, K., Lee, H. W., & Chong, S. (2007). Opportunistic relaying in cellular network for capacity and fairness improvement. In IEEE GLOBECOM 2007-IEEE global telecommunications conference (pp. 4407–4412). IEEE.

  8. Zhang, Q., Feng, Z., Yang, T., & Li, W. (2016). Optimal power allocation and relay selection in multi-hop cognitive relay networks. Wireless Personal Communications, 86(3), 1673–1692.

    Article  Google Scholar 

  9. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels. Hoboken: Wiley.

    Google Scholar 

  10. Bithas, P. S., Efthymoglou, G. P., & Kalivas, D. S. (2014). Outage probability of cognitive relay networks over generalized fading channels with interference constraints. Procedia Computer Science, 40, 84–91.

    Article  Google Scholar 

  11. Phan, H., Zepernick, H. J., & Tran, H. (2013). Impact of interference power constraint on multi-hop cognitive amplifyand-forward relay networks over Nakagami-m fading. IET Communications, 7(9), 860–866.

    Article  Google Scholar 

  12. Kamga, G. N., Fredj, K. B., & Aïssa, S. (2015). Multihop cognitive relaying over composite multipath/shadowing channels. IEEE Transactions on Vehicular Technology, 64(8), 3807–3812.

    Article  Google Scholar 

  13. Miridakis, N. I. (2015). On the ergodic capacity of underlay cognitive dual-hop AF relayed systems under nonidentical generalized-fading channels. IEEE Communications Letters, 19(11), 1965–1968.

    Article  Google Scholar 

  14. Shankar, P. M. (2004). Error rates in generalized shadowed fading channels. Wireless Personal Communications, 28(3), 233–238.

    Article  Google Scholar 

  15. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Cambridge: Academic press.

    MATH  Google Scholar 

  16. Hasna, M. O., & Alouini, M. S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.

    Article  Google Scholar 

  17. Karagiannidis, G. K., Tsiftsis, T. A., & Mallik, R. K. (2006). Bounds for multihop relayed communications in Nakagami-m fading. IEEE Transactions on Communications, 54(1), 18–22.

    Article  Google Scholar 

  18. Al-Ahmadi, S. (2014). The gamma–gamma signal fading model: A survey [wireless corner]. IEEE Antennas and Propagation Magazine, 56(5), 245–260.

    Article  Google Scholar 

  19. Springer, M. D. (1979). The algebra of random variables. New York: Wiley.

    MATH  Google Scholar 

  20. Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009). The H-function: Theory and applications. New York: Springer.

    MATH  Google Scholar 

  21. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  22. Prudnikov, A. P., & Marichev, O. I. (1998). Integrals and series: Special functions (Vol. 3). Milton Park: Gordon and Breach science publishers.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid H. Khoshafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshafa, M.H., Al-Ahmadi, S. On the Capacity of Underlay Multihop Cognitive Relaying Over Generalized-K Composite Fading Channels. Wireless Pers Commun 96, 361–370 (2017). https://doi.org/10.1007/s11277-017-4171-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4171-x

Keywords

Navigation