Skip to main content

Advertisement

Log in

Comparative Study of Lanthanum, Vanadium, and Uranium Bioremoval Using Different Types of Microorganisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Wastewater, containing vanadium, uranium, and lanthanum are produced by mining, nuclear, and other industries. Bacteria Pseudomonas putida, Halomonas mono, and cyanobacterium Spirulina platensis were used for lanthanum, vanadium, and uranium, removal from aqueous solutions by means of biosorption and bioreduction processes. A rapid rate of metal adsorption was observed within the first 5–15 min of the reaction. The pseudo-first-order model was found to correlate well with the experimental data. Bacteria show higher metal biosorption in comparison with cyanobacteria. The strong involvement of carboxyl, hydroxyl, carboxyl, and amide groups in studied metal binding was ascertained by FT-IR spectroscopy. Bioreduction studies carried out with Pseudomonas putida and Halomonas mono cells showed highness of metal reduction in alkaline conditions, resulting in the bioreduction of 69 and 85% of vanadate ions and 48 and 64% of uranyl ions, respectively. Using geochemical modeling, the insoluble metal phases were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adkins, J. P., Cornell, L. A., & Tanner, R. S. (1992). Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiology Journal, 10, 87–97.

    Article  Google Scholar 

  • Anonymous (2012) Patent RU2012107743A, Method for Biosorption Purification of Water From Heavy Metal Ions Using Saccharomyces cerevisiae Yeast.

  • Carpentier, W., Sandra, K., De Smet, I., Brigé, A., De Smet, L., & Van Beeumen, J. (2003). Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Applied and Environmental Microbiology, 69(6), 3636–3639.

    Article  CAS  Google Scholar 

  • Cetinkaya Donmez, G., Aksu, Z., Ozturk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892.

    Article  Google Scholar 

  • Chen, G. Q., Zhang, W. J., Zeng, G. M., Huang, J. H., Wang, L., & Shen, G. L. (2011). Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr (VI)-contaminated wastewater. Journal of Hazardous Materials, 186(2), 2138–2143.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59(1), 75–84.

    Article  CAS  Google Scholar 

  • Clark, R. J. H., & Brown, D. (1975). The chemistry of vanadium, niobium and tantalum: Pergamon texts in inorganic. Pergamon Press.

  • Correa, F. N., Luna, A. S., & da Costa, A. C. A. (2017). Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells. Adsorption Science & Technology, 35(1–2), 137–152.

    Article  CAS  Google Scholar 

  • Evans, L. J., & Barabash, S. (2010). Molybdenum, silver, thallium and vanadium. In P. S. Hooda (Ed.), Trace elements in soils (pp. 515–549). Blackwell Publishing Ltd.

  • Frontasyeva, M. (2011). Neutron activation analysis for the life sciences. A review. Physics of Particles and Nuclei, 42(2), 322–378.

    Google Scholar 

  • Gamez Grijalva, V. M. (2009). Biological and physico-chemical methods for treatment of semiconductor manufacturing effluents. PhD thesis, Arizona.

  • Gorman-Lewis, D., Burns, P. C., & Fein, J. B. (2008). Review of uranyl mineral solubility measurements. The Journal of Chemical Thermodynamics, 40(3), 335–352.

    Article  CAS  Google Scholar 

  • Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311–319.

    Article  CAS  Google Scholar 

  • Hashim, M. A., & Chu, K. H. (2004). Biosorption of cadmium by brown, green and red seaweeds. Chemical Engineering Journal, 97(2–3), 249–255.

    Article  CAS  Google Scholar 

  • Helfferich, F. G. (1962). Ion exchange. New York: McGraw Hill.

    Google Scholar 

  • Istok, D., Senko, J. M., Krumholz, L. R., Watson, D., Bogle, M. A., Peacock, A., Chang, Y.-J., & White, D. C. (2004). In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer environ. Science Technology, 38, 468–475. https://doi.org/10.1021/es034639p.

    Article  CAS  Google Scholar 

  • Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International journal of Environmental Science and Technology, 9(1), 183–193.

    Article  CAS  Google Scholar 

  • Kazy, S. K., Das, S. K., & Sar, P. (2006). Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Journal of Industrial Microbiology and Biotechnology, 33, 773–783.

    Article  CAS  Google Scholar 

  • Merroun, M. L., Chekroun, K. B., Arias, J. M., & Gonzalez-Munoz, M. T. (2003). Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere, 52, 113–120.

    Article  CAS  Google Scholar 

  • Monteiro, C. M., Marques, A. P. G. C., Castro, P. M. L., & Malcata, F. X. (2009). Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation, 20(5), 629–641.

    Article  CAS  Google Scholar 

  • Newsome, L., Morris, K., & Lloyd, J. R. (2014). The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology, 363(10), 164–184.

    Article  CAS  Google Scholar 

  • Ortiz-Bernad, I., Anderson, R. T., Vrionis, H. A., & Lovley, D. R. (2004). Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Applied and Environmental Microbiology, 70(5), 3091–3095.

    Article  CAS  Google Scholar 

  • Özer, A., & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100(1–3), 219–229.

    Article  Google Scholar 

  • Palmieri, M. C., Volesky, B., & Garcia, O. (2002). Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy, 67, 31–36.

    Article  CAS  Google Scholar 

  • Pfennig, N., & Lippert, K. D. (1966). Uber das vitamin B12-bidurfnis phototropher schwefelbacterian. Archiv für Mikrobiologie, 55(3), 245–256.

    Article  CAS  Google Scholar 

  • Pons, M. P., & Fusté, M. C. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028. Applied Microbiology and Biotechnology, 39(4–5), 661–665.

    Article  CAS  Google Scholar 

  • Rai, D., Felmy, A. R., & Ryan, J. L. (1990). Uranium (IV) hydrolysis constants and solubility product of UO2xH2O(am). Inorganic Chemistry, 29, 260–264.

    Article  CAS  Google Scholar 

  • Renshaw, J. C., Butchins, L. J., Livens, F. R., May, I., Charnock, J. M., & Lloyd, J. R. (2005). Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environmental Science and Technology, 39, 5657.

    Article  CAS  Google Scholar 

  • Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L., & Munoz, J. A. (2007). Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 98, 3344.

    Article  CAS  Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427–435.

    Article  CAS  Google Scholar 

  • Tsuruta, T. (2011). Biosorption of uranium for environmental applications using bacteria isolated from the uranium deposits. In I. Ahmad et al. (Eds.), Microbes and microbial technology: agricultural and environmental applications (pp. 267–281). New York: Springer.

    Chapter  Google Scholar 

  • Wall, J. D., & Krumholz, L. R. (2006). Uranium reduction. Annual Review of Microbiology, 60, 149–166.

    Article  CAS  Google Scholar 

  • Xu, X., Xia, S., Zhou, L., Zhang, Z., & Rittmann, B. E. (2015). Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: mechanisms and microorganisms. Journal of Environmental Sciences, 30, 122–128.

    Article  Google Scholar 

  • Zarrouk, C. (1966). Contribution a l’etude d’une cyanophycee. Influence de divers factours physiques. et chimiques sur la croissance et la phytosynthese do Spirulina maxima. Dissertation. University of Paris. (in French).

  • Zouboulis, A. I., Loukidou, M. X., & Matis, K. A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 39, 909–916.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research under Grant No. 15-33-20069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Zinicovscaia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, A., Tregubova, V., Ilin, V. et al. Comparative Study of Lanthanum, Vanadium, and Uranium Bioremoval Using Different Types of Microorganisms. Water Air Soil Pollut 229, 82 (2018). https://doi.org/10.1007/s11270-018-3740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3740-2

Keywords

Navigation