Skip to main content

Advertisement

Log in

The Effects of Low Concentrations of Silver Nanoparticles on Wheat Growth, Seed Quality, and Soil Microbial Communities

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The growing demand for and production of commercial silver nanoparticles (AgNPs) inevitably increases the risk for their environmental release and soil accumulation, which could have deleterious effects on plant growth and soil microorganism communities. However, to date, little is known about how AgNPs impact plant growth, seed quality, and soil microbial communities. We therefore evaluated wheat growth and seed quality after exposure to low concentration of AgNPs while characterizing the composition of the associated soil microbial community by high-throughput sequencing of 16S rRNA genes. Our results showed that low concentration of AgNPs (1 mg/kg in fresh soil) neither inhibited wheat seedling growth nor changed the amino acid content in wheat seeds. Interestingly, the soil microorganisms in the wheat-planted group had more diversity and richness than those in the bulk-soil group. The structure of the bacterial community was affected by AgNP exposure, most significantly during the transition from the seedling to the vegetative stage of the wheat, but recovered to normal level after 49 days of treatment. In conclusion, the results from this study highlight that the environmental risks associated with low concentration of AgNPs, which have clear bioeffects on soil microorganisms, warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M., & Habiger, J. (2012). Characterization and identification of productivity-associated rhizobacteria in wheat. Applied Environmental Microbiology, 78, 4434–4446.

    Article  CAS  Google Scholar 

  • Anjum, F. M., Ahmad, I., Butt, M. S., Sheikh, M., & Pasha, I. (2005). Amino acid composition of spring wheats and losses of lysine during chapati baking. Journal of Food Composition and Analysis, 18, 523–532.

    Article  CAS  Google Scholar 

  • Asad, M. A. U., Lavoie, M., Song, H., Jin, Y., Fu, Z., & Qian, H. (2017). Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Science of the Total Environment, 580, 1287–1299.

    Article  CAS  Google Scholar 

  • Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S., & Autrup, H. (2012). Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicology Letters, 208, 286–292.

    Article  CAS  Google Scholar 

  • Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., & Schulz, S. (2016). Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology, 18, 1988–2000.

    Article  CAS  Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.

    Article  CAS  Google Scholar 

  • Brar, S. K., Verma, M., Tyagi, R., & Surampalli, R. (2010). Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Management, 30(3), 504–520.

    Article  CAS  Google Scholar 

  • Cai, Z., Wang, J., Ma, J., Zhu, X., Cai, J., & Yang, G. (2015a). Anaerobic degradation pathway of the novel chiral insecticide paichongding and its impact on bacterial communities in soils. Journal of Agricultural and Food Chemistry, 63, 7151–7160.

    Article  CAS  Google Scholar 

  • Cai, Z., Zhang, W., Li, S., Ma, J., Wang, J., & Zhao, X. (2015b). Microbial degradation mechanism and pathway of the novel insecticide paichongding by a newly isolated Sphingobacterium sp. P1-3 from soil. Journal of Agricultural and Food Chemistry, 63, 3823–3829.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., & Bauer, M. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6, 1621–1624.

    Article  CAS  Google Scholar 

  • Chen, S., Jin, Y., Lavoie, M., Lu, H., Zhu, K., Fu, Z., & Qian, H. (2016). A new extracellular von Willebrand—a domain-containing protein is involved in silver uptake in Microcystis aeruginosa exposed to silver nanoparticles. Applied Microbiology and Biotechnology, 100(20), 8955–8963.

    Article  CAS  Google Scholar 

  • Chen, S., Li, X., Lavoie, M., Jin, Y., Xu, J., Fu, Z., & Qian, H. (2017). Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. Journal of Environmental Sciences, 51, 352–360.

    Article  Google Scholar 

  • Cheng, L., Tang, X., Vance, C. P., White, P. J., Zhang, F., & Shen, J. (2014). Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.) Journal of Experimental Botany, 65(12), 2995–3003.

    Article  CAS  Google Scholar 

  • Colman, B. P., Arnaout, C. L., Anciaux, S., Gunsch, C. K., Hochella Jr., M. F., Kim, B., Lowry, G. V., McGill, B. M., Reinsch, B. C., & Richardson, C. J. (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PloS One, 8(2), e57189.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo, M., Grinyer, J., Reich, P. B., & Singh, B. K. (2016). Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Functional Ecology, 30(11), 1862–1873.

    Article  Google Scholar 

  • Develey-Riviere, M. P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. The New Phytologist, 175, 405–416.

    Article  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science and Technology, 47(2), 1082–1090.

    Article  CAS  Google Scholar 

  • Doody, M. A., Wang, D., Bais, H. P., & Jin, Y. (2016). Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays. Journal of Nanoparticle Research, 18(10), 290.

    Article  Google Scholar 

  • Franche, C., Lindström, K., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1), 35–59.

    Article  CAS  Google Scholar 

  • Gottschalk, F., Kost, E., & Nowack, B. (2013). Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environmental Toxicology and Chemistry, 32(6), 1278–1287.

    Article  CAS  Google Scholar 

  • Guo, Z., Chen, G., Zeng, G., Huang, Z., Chen, A., Hu, L., Wang, J., & Jiang, L. (2016). Cysteine-induced hormesis effect of silver nanoparticles. Toxicology Research-UK, 5(5), 1268–1272.

    Article  CAS  Google Scholar 

  • Huang, T., Sui, M., Yan, X., Zhang, X., & Yuan, Z. (2016). Anti-algae efficacy of silver nanoparticles to Microcystis aeruginosa: influence of NOM, divalent cations, and pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 492–503.

    Article  CAS  Google Scholar 

  • Jiang, H. S., Li, M., Chang, F. Y., Li, W., & Yin, L. Y. (2012). Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environmental Toxicology and Chemistry, 31(8), 1880–1886.

    Article  CAS  Google Scholar 

  • Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., & Siegrist, H. (2011). Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science & Technology, 45(9), 3902–3908.

    Article  CAS  Google Scholar 

  • Karlen, D. L., Andrews, S. S., Weinhold, B. J., & Doran, J. W. (2003). Soil quality: humankind’s foundation for survival a research editorial by conservation professionals. Journal of Soil and Water Conservation, 58(4), 171–179.

    Google Scholar 

  • Keller, A. A., & Lazareva, A. (2013). Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science and Technology Letters, 1(1), 65–70.

    Article  Google Scholar 

  • Kennedy, A., & Smith, K. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170, 75–86.

    Article  CAS  Google Scholar 

  • Kramer, D. M., Johnson, G., Kiirats, O., & Edwards, G. E. (2004). New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynthesis Research, 79(2), 209–218.

    Article  CAS  Google Scholar 

  • Kumar, N., Palmer, G. R., Shah, V., & Walker, V. K. (2014a). The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PloS One, 9(6), e99953.

    Article  Google Scholar 

  • Kumar, P. V., Pammi, S., Kollu, P., Satyanarayana, K., & Shameem, U. (2014b). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Industrial Crops and Products, 52, 562–566.

    Article  Google Scholar 

  • Lee, W.-M., Kwak, J. I., & An, Y. J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86(5), 491–499.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology, 46, 6893–6899.

    Article  CAS  Google Scholar 

  • Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., & Del Rio, T. G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 86–90.

    Article  CAS  Google Scholar 

  • Lynch, J., & Whipps, J. (1991). Substrate flow in the rhizosphere. Plant and Soil, 129, 1–10.

    Article  Google Scholar 

  • Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551.

    Article  CAS  Google Scholar 

  • Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., & Neufeld, J. D. (2012). PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics, 13(1), 31.

    Article  CAS  Google Scholar 

  • McGee, C. F., Storey, S., Clipson, N., & Doyle, E. (2017). Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology, 26, 449–458.

    Article  CAS  Google Scholar 

  • Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109.

    Article  Google Scholar 

  • Prasanna, R., Jaiswal, P., Nayak, S., Sood, A., & Kaushik, B. D. (2009). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian Journal of Medical Microbiology, 49(1), 89–97.

    Article  CAS  Google Scholar 

  • Qian, H., Hu, B., Cao, D., Chen, W., Xu, X., & Lu, Y. (2007). Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. Bulletin of Environmental Contamination and Toxicology, 78(3–4), 239–244.

    Article  CAS  Google Scholar 

  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947–1956.

    Article  CAS  Google Scholar 

  • Qian, H., Lu, H., Ding, H., Lavoie, M., Li, Y., Liu, W., & Fu, Z. (2015). Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports, 5, 11975.

    Article  Google Scholar 

  • Qian, H., Zhu, K., Lu, H., Lavoie, M., Chen, S., Zhou, Z., Deng, Z., Chen, J., & Fu, Z. (2016). Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: new insights from proteomic and physiological analyses. Science of the Total Environment, 572, 1213–1221.

    Article  CAS  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., & Turlings, T. C. (2005). Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434(7034), 732–737.

    Article  CAS  Google Scholar 

  • Rico, C. M., Morales, M. I., Barrios, A. C., McCreary, R., Hong, J., Lee, W. Y., Nunez, J., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47), 11278–11285.

    Article  CAS  Google Scholar 

  • Roesti, D., Gaur, R., Johri, B., Imfeld, G., Sharma, S., Kawaljeet, K., & Aragno, M. (2006). Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry, 38, 1111–1120.

    Article  CAS  Google Scholar 

  • Sekine, R., Brunetti, G., Donner, E., Khaksar, M., Vasilev, K., Jämting, Å., Scheckel, K., Kappen, P., Zhang, H., & Lombi, E. (2014). Speciation and lability of Ag, AgCl, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. Environmental Science & Technology, 49(2), 897–905.

    Article  Google Scholar 

  • Shams, G., Ranjbar, M., & Amiri, A. (2013). Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). Journal of Nanoparticle Research, 15(5), 1630.

    Article  Google Scholar 

  • Som, C., Wick, P., Krug, H., & Nowack, B. (2011). Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environment International, 37(6), 1131–1142.

    Article  CAS  Google Scholar 

  • Song, H., Lavoie, M., Fan, X., Tan, H., Liu, G., Xu, P., Fu, Z., Paerl, H. W., & Qian, H. (2017). Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. The ISME Journal, 11, 1865–1876.

    Article  CAS  Google Scholar 

  • Sorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A., Kleerebezem, R., Rijpstra, W. I. C., Damsté, J. S. S., Le Paslier, D., Muyzer, G., & Wagner, M. (2012). Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME Journal, 6(12), 2245–2256.

    Article  CAS  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.

    Article  CAS  Google Scholar 

  • Stephens, W. Z., Burns, A. R., Stagaman, K., Wong, S., Rawls, J. F., Guillemin, K., & Bohannan, B. J. (2016). The composition of the zebrafish intestinal microbial community varies across development. The ISME Journal, 10(3), 644–654.

    Article  Google Scholar 

  • Tottman, D. (1987). The decimal code for the growth stages of cereals, with illustrations. The Annals of Applied Biology, 110, 441–454.

    Article  Google Scholar 

  • United States Environmental Protection Agency. (2009). Targeted National Sewage Sludge Survey Statistical Analysis Report. Washington, DC: USEPA.

    Google Scholar 

  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6(1), 1769–1780.

    Article  CAS  Google Scholar 

  • VandeVoort, A. R., & Arai, Y. (2012). Effect of silver nanoparticles on soil denitrification kinetics. Industrial Biotechnology, 8(6), 358–364.

    Article  CAS  Google Scholar 

  • Velicogna, J. R., Ritchie, E. E., Scroggins, R. P., & Princz, J. I. (2016). A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology, 10(8), 1144–1151.

    Article  CAS  Google Scholar 

  • Vertelov, G., Krutyakov, Y. A., Efremenkova, O., Olenin, A. Y., & Lisichkin, G. (2008). A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology, 19(35), 355707.

    Article  CAS  Google Scholar 

  • Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., & Cai, Z. (2011). Autotrophic growth of nitrifying community in an agricultural soil. The ISME Journal, 5(7), 1226–1236.

    Article  CAS  Google Scholar 

  • Yoon, K. Y., Byeon, J. H., Park, J. H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373(2), 572–575.

    Article  CAS  Google Scholar 

  • Zhang, C., Hu, Z., & Deng, B. (2016). Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Research, 88, 403–427.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (21577128) and the Zhejiang Provincial College Students’ Science and Technology Innovation Project (2016R403069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangliang Pan or Haifeng Qian.

Electronic Supplementary Material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhang, M., Jin, Y. et al. The Effects of Low Concentrations of Silver Nanoparticles on Wheat Growth, Seed Quality, and Soil Microbial Communities. Water Air Soil Pollut 228, 348 (2017). https://doi.org/10.1007/s11270-017-3523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3523-1

Keywords

Navigation