Skip to main content

Advertisement

Log in

Effect of dye chemical structure on the efficiency of photoassisted electrochemical degradation using a cathode containing carbon nanotubes and a Ti/RuO2 anode

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this research, photoassisted electrochemical degradation of 13 commercial dyes with various chemical structures and substituent groups was investigated using a cathode containing carbon nanotubes (CNTs) and a titanium/ruthenium oxide (Ti/RuO2) anode. The inner and outer diameters of the CNTs and their stabilization on carbon paper support were confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. All experiments were carried out in identical operating conditions using a recirculation system under ultraviolet (UV) light irradiation. The dyes with electron-releasing groups (e.g., amino, hydroxyl, and acetamido) were more degraded than those containing electron-withdrawing groups (e.g., sulfo, sulfonyl, and halo) due to inductive and/or resonance effects. Moreover, the obtained results reveal that the degradation process follows pseudo-first-order kinetics, and the degradation efficiency was evaluated as the electrical energy per order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Zollinger, Color chemistry: syntheses, properties and applications of organic dyes and pigments, 1st edn. (VCH, New York, 1987)

    Google Scholar 

  2. C. Bauer, P. Jacques, A. Kalt, J. Photochem. Photobiol. A 140, 87 (2001)

    Article  CAS  Google Scholar 

  3. Q. Zhang, Y.H. Jing, A. Shiue, C.T. Chang, B.Y. Chen, C.C. Hsueh, J. Taiwan Inst. Chem. Eng. 43, 760 (2012)

    Article  CAS  Google Scholar 

  4. R. Pourata, A. R. Khataee, S. Aber, N. Daneshvar, Desalination 249, 301 (2009)

  5. C.A. Martínez-Huitle, E. Brillas, Appl. Catal. B 87, 105 (2009)

    Article  Google Scholar 

  6. E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30, 953 (2004)

    Article  CAS  Google Scholar 

  7. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

    Article  CAS  Google Scholar 

  8. O. Legrini, E. Oliveros, A.M. Braun, Chem. Rev. 93, 671 (1993)

    Article  CAS  Google Scholar 

  9. M. Errami, R. Salghi, M. Zougagh, A. Zarrouk, A. Chakir, H. Zarrok, B. Hammouti, L. Bazzi, Res. Chem. Intermed. 39, 505 (2013)

    Article  CAS  Google Scholar 

  10. S. Singh, L.K. Sharma, A. Saraswat, I.R. Siddiqui, R.K.P. Singh, Res. Chem. Intermed. 40, 947 (2014)

    Article  CAS  Google Scholar 

  11. C.A. Martinez-Huitle, S. Ferro, Chem. Soc. Rev. 35, 1324 (2006)

    Article  CAS  Google Scholar 

  12. N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan, Appl. Catal. B 140–141, 92 (2013)

    Article  Google Scholar 

  13. L.H. Tran, P. Drogui, G. Mercier, J.F.O. Blais, J. Hazard. Mater. 164, 1118 (2009)

    Article  CAS  Google Scholar 

  14. O. Simond, V. Schaller, C. Comninellis, Electrochim. Acta 42, 2009 (1997)

    Article  CAS  Google Scholar 

  15. M. Panizza, G. Cerisola, Electrochim. Acta 51, 191 (2005)

    Article  CAS  Google Scholar 

  16. E. Brillas, I. Sires, M.A. Oturan, Chem. Rev. 109, 6570 (2009)

    Article  CAS  Google Scholar 

  17. X. Zhang, J. Fu, Y. Zhang, L. Lei, Sep. Purif. Technol. 64, 116 (2008)

    Article  CAS  Google Scholar 

  18. A.R. Khataee, M. Safarpour, M. Zarei, S. Aber, J. Electroanal. Chem. 659, 63 (2011)

    Article  CAS  Google Scholar 

  19. R.D.C. Soltani, A. Rezaee, A. R. Khataee, H. Godini, Res. Chem. Intermed. 39, 4277 (2013)

  20. A. Lopez, A. Bozzi, G. Mascolo, J. Kiwi, J. Photochem. Photobiol. A 156, 121 (2003)

    Article  CAS  Google Scholar 

  21. A.R. Khataee, O. Mirzajani, Desalination 251, 64 (2010)

    Article  CAS  Google Scholar 

  22. E.K. Winarno, N. Getoff, Radiat. Phys. Chem. 65, 387 (2002)

    Article  CAS  Google Scholar 

  23. B. Vahid, A.R. Khataee, Electrochim. Acta 88, 614 (2013)

    Article  CAS  Google Scholar 

  24. A.R. Khataee, A. Akbarpour, B. Vahid, J. Taiwan Inst. Chem. Eng. 45, 930 (2014)

    Article  CAS  Google Scholar 

  25. A.R. Khataee, M.N. Pons, O. Zahraa, J. Hazard. Mater. 168, 451 (2009)

    Article  CAS  Google Scholar 

  26. C. Galindo, A. Kalt, Dyes Pigments 42, 199 (1999)

    Article  CAS  Google Scholar 

  27. M. Faouzi, P. Canizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, Electrochim. Acta 52, 325 (2006)

    Article  CAS  Google Scholar 

  28. A.R. Khataee, B. Vahid, B. Behjati, M. Safarpour, Environ. Prog. Sustain. Energy 32, 557 (2013)

    Article  CAS  Google Scholar 

  29. M.A. Oturan, E. Guivarch, N. Oturan, I. Sirés, Appl. Catal. B 82, 244 (2008)

    Article  CAS  Google Scholar 

  30. J.R. Bolton, K.G. Bircger, W. Tumas, C.A. Tolman, Pure Appl. Chem. 73, 627 (2001)

    Article  CAS  Google Scholar 

  31. N. Daneshvar, A. Aleboyeh, A.R. Khataee, Chemosphere 59, 761 (2005)

    Article  CAS  Google Scholar 

  32. A. R. Khataee, M. Hosseini, Y. Hanifehpour, M. Safarpour, S. Joo, Res. Chem. Intermed. 40, 495 (2014)

  33. F.A. Carey, R.J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th edn. (Springer, New York, 2007), p. 411, 299, 989

    Google Scholar 

  34. J. McMurry, Organic Chemistry: Chemistry of Benzene: Electrophilic Aromatic Substitution, 6th edn. (Brooks/Cole, Belmont, 2004), p. 541

    Google Scholar 

  35. C.Y. Chen, Water Air Soil Pollut. 202, 335 (2009)

    Article  CAS  Google Scholar 

  36. M.A. Rauf, S.S. Ashraf, Chem. Eng. J. 151, 10 (2009)

    Article  CAS  Google Scholar 

  37. A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A 328, 8 (2010)

    Article  CAS  Google Scholar 

  38. T. Suzuki, S. Timofei, L. Kurunczi, U. Dietze, G. Schüürmann, Chemosphere 45, 1 (2001)

    Article  CAS  Google Scholar 

  39. M. Pasti-Grigsby, A. Paszczynski, S. Goszczynski, D. Crawford, R. Crawford, Appl. Environ. Microbiol. 58, 3605 (1992)

    CAS  Google Scholar 

  40. M.C. Silva, A.D. Correa, M.T.S.P. Amorim, P. Parpot, J.A. Torres, P.M.B. Chagas, J. Mol. Catal. B 77, 9 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank University of Tabriz for providing all support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khataee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khataee, A., Vahid, B., Akbarpour, A. et al. Effect of dye chemical structure on the efficiency of photoassisted electrochemical degradation using a cathode containing carbon nanotubes and a Ti/RuO2 anode. Res Chem Intermed 41, 6073–6085 (2015). https://doi.org/10.1007/s11164-014-1723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1723-5

Keywords

Navigation