Skip to main content
Log in

Correlation between adipocytokines and AGE products in diabetic and non-diabetic patients with myocardial infarction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Advanced glycation end products (AGEs) are known to play a pivotal role in the development of diabetes and its complications. Adipocytokines are important mediators of inflammatory and immune responses. The aim of this study was to investigate the correlation between serum levels of adipocytokines and AGEs in diabetic and non-diabetic patients with myocardial infarction. In the present study, serum leptin, serum adiponectin, interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α) and serum AGEs were investigated. Human serum samples of normal older subjects (n = 31), diabetic patients without myocardial infarction (n = 33), older diabetic patients with myocardial infarction (n = 32) and older non-diabetic with myocardial infarction (n = 30) were investigated. The patients were selected on clinical grounds from the National Institute of Cardiovascular Disease and the Jinnah Postgraduate Medical Centre, Karachi, Pakistan. Values of leptin, IL-6, IL-8, TNF-α and serum AGEs were significantly increased (P < 0.001) in diabetic and non-diabetic patients with and without myocardial infarction as compared with older healthy control subjects. Values of adiponectin were significantly decreased (P < 0.001) in diabetic and non-diabetic patients with and without myocardial infarction as compared with older healthy control subjects. Positive significant correlation was found between fasting blood glucose and serum AGEs, body mass index (BMI) and TNF-α, BMI and leptin, IL-6 and leptin, and IL-6 and TNF-α in all groups. A significant positive correlation was observed between systolic blood pressure and serum AGEs in older diabetic and non-diabetic patients with or without myocardial infarction. Negative significant correlation was found between BMI and adiponectin and IL-6 and adiponectin in all groups. Taken together, these findings demonstrate adipocytokines and AGEs levels were correlated with myocardial infarction in diabetic and non-diabetic patients suggesting its key role in the mechanism that links myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.G. Pitas, N.A. Joseph, A.S. Greeberg, Adipocytokines and insulin resistance. J. Clin. Endocrinol. Metab. 89, 447–452 (2004)

    Article  Google Scholar 

  2. A. Dominguez-Rodriguez, P. Avanzas, L. Consuegra-Sanchez, A. Sanchez-Grande, P. Abreu-Gonzalez, P. Conesa-Zamora, Inflammatory markers in blood and thrombus aspirated from patients with acute myocardial infarction with ST-segment elevation. ARTERIA trial study design and rationale. Biomarkers 18(4), 369–372 (2013)

    Article  CAS  Google Scholar 

  3. M. Coelho, T. Oliveira, R. Fernandes, Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci 9(2), 191–200 (2013)

    Article  CAS  Google Scholar 

  4. M.J. Wen, C.H. Hsieh, C.Z. Wu, F.C. Hsiao, T.L. Hsia, Y.J. Hung, D. Pei, The adipokines and inflammatory marker in young type 2 diabetics with metabolic syndrome: a pilot study. Obes. Res. Clin. Pract. 7(3), e206–e210 (2013)

    Article  Google Scholar 

  5. S. Hu, W. He, Z. Liu, H. Xu, G. Ma, The accumulation of the glycoxidation product N(ε)-carboxymethyllysine in cardiac tissues with age, diabetes mellitus and coronary heart disease. Tohoku J. Exp. Med. 230(1), 25–32 (2013)

    Article  CAS  Google Scholar 

  6. S.J. Yang, S. Kim, S.Y. Hwang, T.N. Kim, H.Y. Choi, H.J. Yoo, J.A. Seo, S.G. Kim, N.H. Kim, S.H. Baik, D.S. Choi, K.M. Choi, Association between sRAGE, esRAGE levels and vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography. Atherosclerosis 220, 402–406 (2012)

    Article  CAS  Google Scholar 

  7. B.K. Rodino-Janeiro, A. Salgado-Somoza, E. Teijeira-Fernandez, J.R. Gonzalez-Juanatey, E. Alvarez, S. Eiras, Receptor for advanced glycation end-products expression in subcutaneous adipose tissue is related to coronary artery disease. Eur. J. Endocrinol. 164, 529–537 (2011)

    Article  CAS  Google Scholar 

  8. M.S. Runge, K. Molnar, N.R. Madamanchi, “Old” hearts and arteries: the role of oxidative stress, Trans. Am. Clin. Climatol. Assoc. 121, 52–60 (2010)

    Google Scholar 

  9. P.M. Ridker, Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity. Nutr. Rev. 65, S253–S259 (2007)

    Article  Google Scholar 

  10. K. Steyn, K. Sliwa, S. Hawken, P. Commerford, C. Onen, A. Damasceno, S. Ounpuu, S. Yusuf, INTERHEART Investigators in Africa, Risk factors associated with myocardial infarction in Africa: the Interheart Africa Study. Circulation 112, 3554–3561 (2005)

    Article  Google Scholar 

  11. M. Peppa, J. Uribarri, H. Vlassara, The role of advanced glycation end products in the development of atherosclerosis. Curr. Diabetes Rep. 4, 31–36 (2004)

    Article  Google Scholar 

  12. M.M. Gabir, J. Roumain, R.L. Hanson, D. Dabelea, G. Imperatore, J. Roumain, P.H. Bennett, W.C. Knowler, The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 23, 108–112 (2000)

    Google Scholar 

  13. Y. Ono, S. Aoki, K. Ohnishi, T. Yasuda, K. Kawano, Y. Tsukada, Increased serum levels of advanced glycation end-products and diabetic complications. Diabetes Res. Clin. Pract. 41, 131–137 (1998)

    Article  CAS  Google Scholar 

  14. C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, P.A. Tataranni, Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86(5), 1930–1935 (2001)

    Article  CAS  Google Scholar 

  15. B.B. Dokken, The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr. 21(3), 160–165 (2008)

    Article  Google Scholar 

  16. H.J. De Las, F. Bacha, H. Tfayli, Cross-sectional association between blood pressure, in vivo insulin sensitivity and adiponectin in overweight adolescents. Horm. Res. Paediatr. 76, 379–385 (2011)

    Article  Google Scholar 

  17. I.F. Shatat, K.D. Freeman, P.M. Vuguin, Relationship between adiponectin and ambulatory blood pressure in obese adolescents. Pediatr. Res. 65, 691–695 (2009)

    Article  CAS  Google Scholar 

  18. M. Lambert, J. O’Loughlin, E.E. Delvin, Association between insulin, leptin, adiponectin and blood pressure in youth. J. Hypertens. 27, 1025–1032 (2009)

    Article  CAS  Google Scholar 

  19. J.M. Cook, R.K. Semple, Hypoadiponectinemia—cause or consequence of human “insulin resistance”? J. Clin. Endocrinol. Metab. 95, 1544–1554 (2010)

    Article  CAS  Google Scholar 

  20. D.C. Lau, B. Dhillon, H. Yan, Adipokines: molecular links between obesity and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 288, H2031–H2041 (2005)

    Article  CAS  Google Scholar 

  21. S.F. Yan, R. Ramasamy, Y. Naka, A.M. Schmidt, Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93, 1159–1169 (2003)

    Article  CAS  Google Scholar 

  22. H.J. Park, J.Y. Baek, W.S. Shin, D.B. Kim, S.W. Jang, D.I. Shin, Y.S. Koh, S.M. Seo, J.S. Uhm, T.H. Kim, C.J. Kim, P.J. Kim, K. Chang, W.S. Chung, K.B. Seung, J.M. Lee, Soluble receptor of advanced glycated endproducts is associated with plaque vulnerability in patients with acute myocardial infarction. Circ. J. 75, 1685–1690 (2011)

    Article  CAS  Google Scholar 

  23. G. Basta, S. Del Turco, F. Marchi, T. Navarra, D. Battaglia, A. Mercuri, A. Mazzone, S. Berti, Elevated soluble receptor for advanced glycation end product levels in patients with acute coronary syndrome and positive cardiac troponin I. Coron. Artery Dis. 22, 590–594 (2011)

    Article  Google Scholar 

  24. R. Shibata, K. Sato, D.R. Pimentel, Y. Takemura, S. Kihara, K. Ohashi, T. Funahashi, N. Ouchi, K. Walsh, Adiponectin protects against myocardial ischemia reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096–1103 (2005)

    Article  CAS  Google Scholar 

  25. A.L. Pasqui, M. Di Renzo, G. Bova, S. Maffei, G. Pompella, A. Auteri, L. Puccetti, Proinflammatory/anti-inflammatory cytokine imbalance in acute coronary syndromes. Clin. Exp. Med. 6, 38–44 (2006)

    Article  CAS  Google Scholar 

  26. A. Bossowska, B. Kiersnowska-Rogowska, A. Bossowski, B. Galar, P. Sowiński, Cytokines in patients with ischaemic heart disease or myocardial infarction. Kardiol. Pol. 59, 110–114 (2003)

    Google Scholar 

  27. K. Mizia-Stec, Z. Gasior, B. Zahorska-Markiewicz, J. Janowska, A. Szulc, E. Jastrzebska-Maj, I. Kobielusz-Gembala, Serum tumor necrosis factor-alpha, interleukin-2 and interleukin-10 activation instable angina and acute coronary syndromes. Coron. Artery Dis. 14, 431–438 (2003)

    Article  Google Scholar 

  28. Y. Luo, D. Jiang, D. Wen, J. Yang, L. Li, Changes in serum interleukin-6 and C-reactive protein levels in patients with acute coronary syndromes and their responses to simvastatin. Heart Vessels 19, 257–262 (2004)

    Article  Google Scholar 

  29. H. Koukkunen, K. Penttila, A. Kemppainen, M. Halinen, I. Penttila, T. Rantanen, K. Pyörälä, C-reactive protein, fibrinogen, IL-6, and TNF-alpha in the prognostic classification of unstable angina pectoris. Ann. Med. 33, 37–47 (2001)

    Article  CAS  Google Scholar 

  30. Y.N. Wang, S.M. Che, H.Q. Ma, Clinical significance of IL-1 beta, sIL-2R, IL-6, TNF-alpha and IFN-gamma in acute coronary syndromes. Chin. Med. Sci. J. 19, 120–124 (2004)

    CAS  Google Scholar 

  31. T. Pischon, C.J. Girman, G.S. Hotamisligil, N. Rifai, F.B. Hu, E.B. Rimm, Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004)

    Article  CAS  Google Scholar 

  32. S. Kojima, T. Funahashi, T. Sakamoto, S. Miyamoto, H. Soejima, J. Hokamaki, I. Kajiwara, S. Sugiyama, M. Yoshimura, K. Fujimoto, Y. Miyao, H. Suefuji, A. Kitagawa, N. Ouchi, S. Kihara, Y. Matsuzawa, H. Ogawa, The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 89(6), 667–668 (2003)

    Article  CAS  Google Scholar 

  33. N. Ouchi, S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, K. Hotta, M. Nishida, M. Takahashi, T. Nakamura, S. Yamashita, T. Funahashi, Y. Matsuzawa, Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100, 2473–2476 (1999)

    Article  CAS  Google Scholar 

  34. S. Plant, B. Shand, P. Elder, R. Scott, Adiponectin attenuates endothelial dysfunction induced by oxidised low-density lipoproteins. Diabetes Vasc. Dis. Res 5, 102–108 (2008)

    Article  Google Scholar 

  35. N. Ouchi, S. Kihara, Y. Arita, Y. Okamoto, K. Maeda, H. Kuriyama, K. Hotta, M. Nishida, M. Takahashi, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Funahashi, Y. Matsuzawa, Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102(11), 1296–1301 (2000)

    Article  CAS  Google Scholar 

  36. R. Ouedraogo, X. Wu, S.Q. Xu, L. Fuchsel, H. Motoshima, K. Mahadev, K. Hough, R. Scalia, B.J. Goldstein, Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55, 1840–1846 (2006)

    Article  CAS  Google Scholar 

  37. P. Libby, P.M. Ridker, A. Maseri, Inflammation and atherosclerosis. Circulation 105(9), 1135–1143 (2002)

    Article  CAS  Google Scholar 

  38. Y. Unno, M. Sakai, Y. Sakamoto, A. Kuniyasu, H. Nakayama, R. Nagai, S. Horiuchi, Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36. Biochem. Biophys. Res. Commun. 325, 151–156 (2004)

    Article  CAS  Google Scholar 

  39. F. Sam, K. Walsh, What can adiponectin say about left ventricular function? Heart 96(5), 331–332 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Pakistan Science Foundation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjuman Gul Memon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memon, A.G., Rahman, M.A., Alghasham, A. et al. Correlation between adipocytokines and AGE products in diabetic and non-diabetic patients with myocardial infarction. Res Chem Intermed 41, 1625–1634 (2015). https://doi.org/10.1007/s11164-013-1298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1298-6

Keywords

Navigation