Skip to main content
Log in

Evolution of quantum correlations in the open quantum systems consisting of two coupled oscillators

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The open quantum systems consisting of coupled and uncoupled asymmetric oscillators are considered with an initial quantum-dot trapped-ion coherent state. The quantum correlations between spatial modes of this trapped ion are examined to find their dependence on the temperature, asymmetric parameter, dissipation coefficient and the magnetic field. It is observed that the discord of the initial state is an increasing function of the asymmetric parameter and the magnetic field. Moreover, in the case of two uncoupled modes, entanglement and discord are decreasing functions of temperature and the dissipation coefficient. However, as the temperature and dissipation coefficient increase, the discord fades out faster. In the case of two coupled modes, as the temperature and dissipation coefficient increase, the sudden death of the entanglement and fade out of the discord happen sooner; moreover, as the magnetic field increases, the entanglement sudden death and the discord fade out time occur sooner. Also, with the increase in the asymmetric parameter, the entanglement sudden death is postponed. In addition, in the asymmetric system, appreciable discord can be created in the temperature range 0–10 K, while appreciable entanglement can be created in the temperature range 0–5 mK. Finally, it is observed that non-monotonic evolution of quantum correlations is due to coupling of modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  3. Yuen, H.P., Kim, A.M.: Erratum: classical noise-based cryptography similar to two-state quantum cryptography. Phys. Lett. A 246, 560 (1998)

    Article  ADS  Google Scholar 

  4. Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  5. Bowen, W.P., Treps, N., Buchler, B.C., Schnabel, R., Ralph, T.C., Bachor, H.A., Symul, T., Lam, P.K.: Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)

    Article  ADS  Google Scholar 

  6. Zhang, T.C., Goh, K.W., Chou, C.W., Lodahl, P., Kimble, H.J.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)

    Article  ADS  Google Scholar 

  7. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  10. Opanchuk, B., Arnaud, L., Reid, M.D.: Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses. Phys. Rev. A 89, 062101 (2014)

    Article  ADS  Google Scholar 

  11. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  12. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  13. Madhok, V., Datta, A.: Quantum discord as a resource in quantum computation. Int. J. Mod. Phys. B 27, 1345041 (2013)

    Article  ADS  MATH  Google Scholar 

  14. Ting, Y., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  15. Ting, Y., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Werlang, T., Souza, S., Fanchini, F.F., Villas-Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A. 80, 024103 (2009)

    Article  ADS  Google Scholar 

  17. Xu, J., Chen, Q.: Robustness of quantum discord to sudden death in nuclear magnetic resonance. Chin. Phys. B 21, 040302 (2012)

    Article  ADS  Google Scholar 

  18. Hu, M.L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851 (2012)

    Article  ADS  MATH  Google Scholar 

  19. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Isar, A., Scheid, W.: Quantum decoherence and classical correlations of the harmonic oscillator in the Lindblad theory. Pysica A 373, 298 (2007)

    Article  ADS  Google Scholar 

  21. Isar, A.: Entanglement dynamics of two-mode Gaussian states in a thermal environment. J. Russ. Laser Res. 30, 458 (2009)

    Article  Google Scholar 

  22. An, J.H., Zhang, W.M.: Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels. Phys. Rev. A 76, 042127 (2007)

    Article  ADS  Google Scholar 

  23. Addesso, G., Serafini, A., Illuminate, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure and decoherence. Phys. Rev. A 73, 032345 (2006)

    Article  ADS  Google Scholar 

  24. Dodd, P.J.: Disentanglement by dissipative open system dynamics. Phys. Rev. A 69, 052106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable-entanglement dynamics in structured reservoirs. Phys. Rev. A 80, 062324 (2009)

    Article  ADS  Google Scholar 

  26. Vasile, R., Giorda, P., Olivares, S., Paris, M.G.A., Maniscalco, S.: Nonclassical correlations in non-Markovian continuous-variable systems. Phys. Rev. A 82, 012313 (2010)

    Article  ADS  Google Scholar 

  27. Ban, M.: Decoherence of continuous variable quantum information in non-Markovian channels. J. Phys. A Math. Gen. 39, 1927 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Walls, D.F.: Squeezed states of light. Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  29. Isar, A.: Quantum entanglement and quantum discord of two-mode Gaussian states in a thermal environment. Open Syst. Inf. Dyn. 18, 175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Isar, A.: Evolution of continuous variable correlations in open quantum systems. Rom. J. Phys. 57, 262 (2012)

    MathSciNet  Google Scholar 

  31. Isar, A.: Quantum entanglement of two bosonic modes in two-reservoir model. Rom. J. Phys 58, 599 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Isar, A.: Quantum entanglement of two-mode Gaussian systems in two-reservoir model. Rom. Rep. Phys. 65, 711 (2013)

    Google Scholar 

  33. Isar, A.: Quantum discord and classical correlations of two bosonic modes in the two-reservoir model. J. Russ. Laser. Res. 35, 62 (2014)

    Article  Google Scholar 

  34. Isar, A.: Quantum discord of two bosonic modes in two-reservoir model. Open Syst. Inf. Dyn. 20, 1340003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, X., Wu, W.: Rise of quantum correlation in non-Markovian environments in continuous-variable systems. Chin. Phys. B 23, 070303 (2014)

    Article  ADS  Google Scholar 

  36. Burkard, G., Engel, H.A., Loss, D.: Spintronics and quantum dots for quantum computing and quantum communication. Fortschr. Phys. 48, 965 (2000)

    Article  Google Scholar 

  37. Sudiarta, I.W., Geldart, G.J.W.: Solving the Schrödinger equation using the finite difference time domain method. J. Phys. A Math. Theor. 40, 1885 (2007)

    Article  ADS  MATH  Google Scholar 

  38. Merkt, U., Huser, J., Wagner, M.: Energy spectra of two electrons in a harmonic quantum dot. Phys. Rev. B 43, 7320 (1991)

    Article  ADS  Google Scholar 

  39. Zhu, K.D., Gu, S.W.: Electric-field effects on shallow donor impurities in a harmonic quantum dot. Phys. Lett. A 181, 465 (1993)

    Article  ADS  Google Scholar 

  40. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Mansour Malek, M., Van Den Broeck, C., Nicolis, G., Turner, J.W.: Asymptotic properties of Markovian master equations. Ann. Phys. 131, 283 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., Sudarshan, E.C.G.: Properties of quantum Markovian master equations. Rep. Math. Phys. 13, 149 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. De Gosson, M.: Uncertainty principle, phase space ellipsoids and weyl calculus. Oper. Theory Adv. Appl. 164, 121 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Serafni, A., Illuminati, F., De Siena, S.: Symplectic invariants, entropic measures and correlations of Gaussian states. J. Phys. B At. Mol. Opt. Phys. 37, L21 (2004)

    Article  ADS  Google Scholar 

  46. Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  47. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. Serafini, A., Illuminati, F., Paris, M.G.A., De Siena, S.: Entanglement and purity of two-mode Gaussian states in noisy channels. Phys. Rev. A 69, 022318 (2004)

    Article  ADS  Google Scholar 

  49. Isar, A.: Entanglement and discord in two-mode Gaussian open quantum systems. Phys. Scripta. T147, 014015 (2012)

    Article  ADS  Google Scholar 

  50. Liu, X., Wu, W.: Non-markovian dynamic of Guassian quantum discord in continuous-variable systems. Acta. Phys. Pol. A 126, 652 (2014)

    Article  Google Scholar 

  51. Zurek, W.H.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  52. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  53. Petruccione, F., Breuer, H.P.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  54. Genkin, M., Eisfeld, A.: Robustness of spatial Penning-trap modes against environment-assisted entanglement. J. Phys. B At. Mol. Opt. Phys. 44, 035502 (2011)

    Article  ADS  Google Scholar 

  55. Sandulescu, A., Scutaru, H., Scheid, W.: Open quantum system of two coupled harmonic oscillators for application in deep inelastic heavy ion collisions. J. Phys. A Math. Gen. 20, 2121 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  56. Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Lindblad, G.: Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 10, 393 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Dippel, O., Schmelcher, P., Cederbaum, L.S.: Charged anisotropic harmonic oscillator and the hydrogen atom in crossed fields. Phys. Rev. A 49, 4415 (1994)

    Article  ADS  Google Scholar 

  59. Afshar, D., Mehrabankar, S., Abbasnezhad, F.: Entanglement evolution in the open quantum systems consisting of asymmetric oscillators. Eur. Phys. J. D 70, 64 (2016)

  60. Gisin, N., Rigo, M.: Relevant and irrelevant nonlinear Schrödinger equations. J. Phys. A Math. Gen. 28, 7375 (1995)

    Article  ADS  MATH  Google Scholar 

  61. Chizhov, A., Nazmitdinov, R.G.: An orbital entanglement in two-electron quantum dots in a magnetic field. J. Phys. Conf. Ser. 248, 012021 (2010)

    Article  Google Scholar 

  62. Fern’andez, D.J., Vel’azquez, M.: Coherent states approach to Penning trap. J. Phys. A Math. Theor. 42, 085304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  63. Contreras-Astorga, A., Fern’andez, D.J.: Coherent states for quadratic Hamiltonians. J. Phys. A Math. Theor. 44, 035304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Hamdouni, Y.: On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 37, 125106 (2010)

    Article  ADS  Google Scholar 

  65. Boura, H.A., Isar, A.: Logarithmic negativity of two bosonic modes in the two thermal reservior model. Rom. J. Phys. 60, 1278 (2015)

    Google Scholar 

  66. Isar, A.: Quantum correlations of two-mode Gaussian systems in a thermal environment. Phys. Scripta. T153, 014035 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by Shahid Chmaran University of Ahvaz (Grant No. 95/3/02/31400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Afshar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasnezhad, F., Mehrabankar, S., Afshar, D. et al. Evolution of quantum correlations in the open quantum systems consisting of two coupled oscillators. Quantum Inf Process 16, 103 (2017). https://doi.org/10.1007/s11128-017-1556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1556-4

Keywords

Navigation