Skip to main content
Log in

Quantum phase transition in the Dzyaloshinskii–Moriya interaction with inhomogeneous magnetic field: Geometric approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we generalize the results of Oh (Phys Lett A 373:644–647, 2009) to Dzyaloshinskii–Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sachdev, S.: Quantum Phase Transitions, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  2. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. University of Illinois, Urbana-Champaign (1992)

    MATH  Google Scholar 

  3. Mosseri, R., Dandoloff, R.: Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 34, 10243 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bernevig, B.A., Chen, H.D.: Geometry of the three-qubit state, entanglement and division algebras. J. Phys. A Math. Gen. 36, 8325 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Oh, S.: Geometric phases and entanglement of two qubits with XY type interaction. Phys. Lett. A 373, 644–647 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 392, 45 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  8. Najarbashi, G., Ahadpour, S., Fasihi, M.A., Tavakoli, Y.: Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations. J. Phys. A Math. Theor. 40, 6481–6489 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Najarbashi, G., Seifi, B., Mirzaei, S.: Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection. Quantum Inf. Process. 15, 509528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Najarbashi, G., Seifi, B.: Relation Between Stereographic Projection and Concurrence Measure in Bipartite Pure States. Int. J. Theor. Phys. (2016). doi:10.1007/s10773-016-3071-2

    Google Scholar 

  11. Lévay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A Math. Gen. 37, 1821 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Oh, S., Huang, Z., Peskin, U., Kais, S.: Entanglement, Berry phases, and level crossings for the atomic Breit–Rabi Hamiltonian. Phys. Rev. A 78, 062106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A. 59, 156 (1999)

    Article  ADS  Google Scholar 

  17. Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  18. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  19. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  20. Maleki, Y., Khashami, F., Mousavi, Y.: Entanglement of three-spin states in the context of SU(2) coherent states. Int. J. Theor. Phys. 54, 210 (2015)

    Article  MATH  Google Scholar 

  21. Angelakis, D.G., Christandl, M., Ekert, A., Kay, A., Kulik, S.: Quantum Information Processing: From Theory to Experiment, vol. 199. Computer and Systems Sciences, vol. 199. IOS Press, NATO Science Series, Amsterdam (2006)

    MATH  Google Scholar 

  22. Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  23. Yang, Z., Yang, L., Dai, J., Xiang, T.: Rigorous solution of the spin-1 quantum ising model with single-ion anisotropy. Phys. Rev. Lett. 100, 067203 (2008)

    Article  ADS  Google Scholar 

  24. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  25. Wang, X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)

    Article  ADS  Google Scholar 

  26. Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)

    Article  ADS  Google Scholar 

  27. Kao, Z.C., Ng, J., Yeo, Y.: Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains. Phys. Rev. A 72, 062302 (2005)

    Article  ADS  Google Scholar 

  28. Zhu, S.L.: Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  29. Asoudeh, M., Karimipour, V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  30. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  31. Zhang, G.F., Li, S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  32. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  33. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  34. Moriya, T.: New mechanism of anisotropic super exchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  35. Kheirandish, F., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  36. Wu, L.A., Lidar, D.A.: Universal quantum logic from Zeeman and anisotropic exchange interactions. Phys. Rev. A 66, 062314 (2002)

    Article  ADS  Google Scholar 

  37. Wu, L.A., Lidar, D.A.: Dressed qubits. Phys. Rev. Lett. 91, 097904 (2003)

    Article  ADS  Google Scholar 

  38. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

  39. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

  40. Vedral, V.: Modern Foundations of Quantum Optics. University of Leeds, Imperial College Press, Leeds (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najarbashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najarbashi, G., Seifi, B. Quantum phase transition in the Dzyaloshinskii–Moriya interaction with inhomogeneous magnetic field: Geometric approach. Quantum Inf Process 16, 40 (2017). https://doi.org/10.1007/s11128-016-1505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1505-7

Keywords

Navigation