Skip to main content
Log in

Tripartite operation sharing with five-qubit Brown state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper I put forward a tripartite quantum operation sharing scheme with a five-qubit entangled state presented by Brown et al. (J Phys A 38:1119, 2005). I confirm the scheme security via analysis, expose its three features and compare my scheme with others from these aspects via discussions. Besides, I reveal the experimental feasibility of the scheme with the current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  5. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  8. Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  9. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  13. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  15. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  16. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quant. Inf. Process. 14, 4255 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Xie, C.M., et al.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 814 (2015)

    Google Scholar 

  18. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, Q.B., et al.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Xing, H., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ji, Q.B., et al.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, S.F., Liu, Y.M., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Liu, D.C., Liu, Y.M., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process. 12, 3527 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ye, B.L., et al.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  25. Brown, I.D.K., et al.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Xiu, X.M., et al.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)

    Article  ADS  Google Scholar 

  27. Qiu, L.: Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf. Process. 9, 643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deng, F.G., et al.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329 (2005)

    Article  ADS  MATH  Google Scholar 

  29. Deng, F.G., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  30. Xiao, L., Long, G.L., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  33. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  34. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled state in cavity QED. Phys. Rev. A 59, 3044 (1999)

    Article  ADS  Google Scholar 

  35. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  36. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am very grateful to the anonymous referee for his/her constructive suggestions. This work was supported by the Twelfth Five Year Plan Project of GuangDong Province (GD13XGL29), Science and technology plan project of Guangdong Province (2013B070206076), Ordinary university characteristics innovation projects of GuangDong Province and the planning project of ShaoGuan (Z2013018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J. Tripartite operation sharing with five-qubit Brown state. Quantum Inf Process 15, 2465–2473 (2016). https://doi.org/10.1007/s11128-016-1281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1281-4

Keywords

Navigation