Skip to main content
Log in

Bidirectional controlled joint remote state preparation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Fusing the ideas of bidirectional controlled teleportation and joint remote state preparation, we put forward a protocol for implementing five-party bidirectional controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster state as quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor. In order to extend BCJRSP, we generalize this protocol from five participants to multi participants utilizing two multi-qubit GHZ-type states as channel and propose two generalized BCJRSP schemes. On the other hand, we generalize the BCJRSP to multidirectional controlled joint remote state preparation by utilizing multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional quantum teleportation, quantum state sharing and joint remote state preparation, some modified versions are discussed. Only Pauli operations and single-qubit measurements are used in our schemes, so the scheme with five-party is easily realized in physical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Loock, P.V., Woodbrook, C., Gu, M.: Building Gaussian cluster states by linear optics. Phys. Rev. A 76, 032321 (2007)

    Article  ADS  Google Scholar 

  2. Zhang, J., Braunstein, S.L.: Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006)

    Article  ADS  Google Scholar 

  3. Plenio, M.B., Vedral, V.: Teleportation, entanglement and thermodynamics in the quantum world. Contemp. Phys. 39, 431 (1998)

    Article  ADS  Google Scholar 

  4. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantumphilosophy. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Liu, D.C., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Generalized three-party qubit operation sharing. Int. J. Quantum Inf. 11, 1350011 (2013)

    Article  MathSciNet  Google Scholar 

  7. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally entangled \(|\chi \rangle \) state. Chin. Phys. B 23, 010304 (2014)

    Article  ADS  Google Scholar 

  8. Peng, J.Y., Lei, H.X., Mo, Z.W.: Faithful remote information concentration based on the optimal universal \(1\rightarrow 2\) telecloning of arbitrary two-qubit states. Int. J. Theor. Phys. 53, 1637 (2014)

    Article  MATH  Google Scholar 

  9. Peng, J.Y., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing with a nonmaximally four-qubit cluster state. Int. J. Quantum Inf. 11, 1350004 (2013)

  10. Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 68, 2881 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  12. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  14. Peng, J.Y., Luo, M.X., Mo, Z.W., Liu, H.W.: Flexible deterministic joint remote state preparation of some states. Int. J. Quantum Inf. 11, 1350044 (2013)

    Article  MathSciNet  Google Scholar 

  15. Lou, M.X., Chen, X.B., Yang, Y.X., et al.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via four-particle cluster state and by positive operator-value measurement. Int. J. Mod. Phys. B 27, 1350091 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via \(W\) state: reverse of ancilla-free phase-covariant telecloning. Quantum Inf. Process. 12, 3511 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  19. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  20. Wang, X.W., Shan, Y.G., Xia, L.X., Lu, M.W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Rev. A 364, 7 (2007)

    MATH  Google Scholar 

  21. Su, X.L., Zhao, Y.P., Hao, S.L., Jia, X.J., Xie, C.D., Peng, K.C.: Experimental preparation of eight-partite linear and two-diamond shape cluster states for photonic qumodes. Opt. Lett. 37, 5178 (2012)

    Article  ADS  Google Scholar 

  22. Yao, X.C., Wang, T.X., Chen, H.Z., Gao, W.B., et al.: Experimental demonstration of topological error correction. Nature 482, 489 (2012)

    Article  ADS  Google Scholar 

  23. Bai, M.Q., Mo, Z.W.: Hierarchical quantum information splitting with eight-qubit cluster states. Quantum Inf. Process. 12, 1053 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284, 1082 (2011)

    Article  ADS  Google Scholar 

  25. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  26. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plemo, N.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  27. Zha, X.W., Zou, Z.C., Qi, J.X.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. Theor. Phys. 52, 1740 (2013)

    Article  MathSciNet  Google Scholar 

  28. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. Theor. Phys. 53, 1454 (2014)

    Article  MATH  Google Scholar 

  29. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. Theor. Phys. 52, 3870 (2013)

    Article  MATH  Google Scholar 

  30. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. Theor. Phys. 53, 2697 (2014)

    Article  MATH  Google Scholar 

  31. Lo, H.K.: Classical communication cost in distributed quantum information processing: a generalization of quantum communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  32. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 335, 285 (2006)

    Article  ADS  Google Scholar 

  33. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)

    Article  ADS  Google Scholar 

  34. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-part. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  35. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pen, J.W.: Optical nondestructive controlled-NOT gate without using entangled photons. Phys. Rev. Lett. 98, 170502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant. 20135134110003), Sichuan Provincial Natural Science Foundation of China (Grant No. 2015JY0002) and the Research Foundation of the Education Department of Sichuan Province (Grant No. 15ZA0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yin Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY., Bai, MQ. & Mo, ZW. Bidirectional controlled joint remote state preparation. Quantum Inf Process 14, 4263–4278 (2015). https://doi.org/10.1007/s11128-015-1122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1122-x

Keywords

Navigation