Skip to main content
Log in

A measure of non-Markovianity for unital quantum dynamical maps

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One of the most important topics in the study of the dynamics of open quantum systems is the information exchange between system and environment. Based on the features of back-flow information from an environment to a system, an approach is provided to detect non-Markovianity for unital dynamical maps. The method takes advantage of non-contraction property of the von Neumann entropy under completely positive and trace-preserving unital maps. Accordingly, for the dynamics of a single qubit as an open quantum system, the sign of the time derivative of the density matrix eigenvalues of the system determines the non-Markovianity of unital quantum dynamical maps. The main characteristics of the measure are to make the corresponding calculations and optimization procedure simpler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119–130 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  3. Alicki, R., lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Bellomo, B., Lo Franco, R., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)

    Article  ADS  Google Scholar 

  5. Mazzola, L., Piilo, J.: Constant quantum correlations in Markovian and non-Markovian environments. Revista Mexicana de Fisica, S 57(3), 85–90 (2011)

    MathSciNet  Google Scholar 

  6. Rajagopal, A.K., Usha Devi, A.R., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82, 042107 (2010)

    Article  ADS  Google Scholar 

  7. Hou, S.C., Yi, X.X., Yu, S.X., Oh, C.H.: Alternative non-Markovianity measure by divisibility of dynamical maps. Phys. Rev. A 83, 062115 (2011)

    Article  ADS  Google Scholar 

  8. Chruściński, D., Kossakowski, A.: Non-Markovian quantum dynamics: local versus nonlocal. Phys. Rev. Lett. 104, 070406 (2010)

    Article  ADS  Google Scholar 

  9. Xu, Z.Y., Yang, W.L., Feng, M.: Proposed method for direct measurement of the non-Markovian character of the qubits coupled to bosonic reservoirs. Phys. Rev. A 81, 044105 (2010)

    Article  ADS  Google Scholar 

  10. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  11. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable quantum key distribution in non-Markovian channels. Phys. Rev. A 83, 042321 (2011)

    Article  ADS  Google Scholar 

  12. Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)

    Article  Google Scholar 

  13. He, Z., Zou, J., Li, L., Shao, B.: Effective method of calculating the non-Markovianity N for single-channel open systems. Phys. Rev. A 83, 012108 (2011)

    Article  ADS  Google Scholar 

  14. Haikka, P., McEndoo, S., De Chiara, G., Palma, G.M., Maniscalco, S.: Quantifying, characterizing and controlling information flow in ultracold atomic gases. Phys. Rev. A 84, 031602 (2011)

    Article  ADS  Google Scholar 

  15. Haikka, P., Goold, J., McEndoo, S., Plastina, F., Maniscalco, S.: Non-Markovianity, Loschmidt echo, and criticality: a unified picture. Phys. Rev. A 85, 060101 (R) (2012)

    Article  ADS  Google Scholar 

  16. Huelga, S.F., Rivas, A., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)

    Article  ADS  Google Scholar 

  17. Laine, E.-M., Breuer, H.-P., Piilo, J., Li, C.-F., Guo, G.-C.: Nonlocal memory effects in the dynamics of open quantum systems. Phys. Rev. Lett. 108, 210402 (2012)

    Article  ADS  Google Scholar 

  18. Zeng, H.-S., Tang, N., Zheng, Y.-P., Wang, G.-Y.: Equivalence of the measures of non-Markovianity for open two-level systems. Phys. Rev. A 84, 032118 (2011)

    Article  ADS  Google Scholar 

  19. Liu, J., Lu, X.-M., Wang, X.: Nonunital non-Markovianity of quantum dynamics. Phys. Rev. A 87, 042103 (2013)

    Article  ADS  Google Scholar 

  20. Wang, B., Xu, Z.-Y., Chen, Z.-Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  21. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of Non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Breuer, H.-P.: Foundations and measures of quantum non-Markovianity. J. Phys. B: At. Mol. Opt. Phys. 45, 154001 (2012)

    Article  ADS  Google Scholar 

  23. Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Vasile, R., Maniscalco, S., Paris, M.G.A., Breuer, H.P., Piilo, J.: Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps. Phys. Rev. A 84, 052118 (2011)

    Article  ADS  Google Scholar 

  26. Lu, X.-M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  27. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  28. Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Farías, O.J., Walborn, S.P., Souto Riberio, P.H., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014)

    Article  ADS  Google Scholar 

  29. Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Souto Ribeiro, P.H.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)

    Article  ADS  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Imre, S., Gyongyosi, L.: Advanced Quantum Communications (An Engineering Approach). Wiley, New York, NY (2012)

    Book  Google Scholar 

  32. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chruściński, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014)

    Article  ADS  Google Scholar 

  34. Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, Matthew P.A., Anupam, Garg, Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  36. Addis, C., Bylicka, B., Chruściński D., Maniscalco, S.: What we talk about when we talk about non-Markovianity. arXiv:1402.4975v1

  37. Daffer, S., Wodkiewicz, K., Cresser, J.D., Mclver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304(R) (2004)

    Article  ADS  Google Scholar 

  38. Venkataraman, V., Plato, A.D.K., Tufarelli, T., Kim, M.S.: Affecting non-Markovian behaviour by changing bath structures. J. Phys. B: At. Mol. Opt. Phys. 47, 015501 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Appendix

Appendix

The pure dephasing interaction between a two-level system and surrounding bosonic environment is given by

$$\begin{aligned} H=\frac{\omega _{0}}{2}\sigma _{z}+\sum _{k}\omega _{k}b_{k}^{\dag }b_{k} +\sum _{k}\sigma _{k}\left( g_{k}b_{k}^{\dag }+g_{k}^{*}b_{k}\right) , \end{aligned}$$
(36)

where \(\sigma _{z}\) is the usual Pauli matrix in the z-direction, \(\omega _{0}\) is the two-level system frequency, the \(b_{k}\)(\(b_{k}^{\dag }\)) are the annihilation (creation) operators which satisfy the commutation relation \(\left[ b_{k},b^{\dag }_{\acute{k}}\right] =\delta _{k,\acute{k}}\), \(g_{k}\) is a constant which can control the strength of the coupling between the system and the environment. In this model, the off-diagonal elements of the density matrix of the two-level system decay during the quantum process, while the diagonal elements are constant in time because there is no transition between energy levels which is due to this fact that \([H,\sigma _{z}]=0\) holds. In interaction picture, the Hamiltonian is obtained as

$$\begin{aligned} H_{I}(t)=\sum _{K}\sigma _{z}\left( g_{k}a_{k}^{\dag }\hbox {e}^{i\omega _{k}t} +g_{k}^{*}a_{k}\hbox {e}^{-\omega _{k}t}\right) . \end{aligned}$$
(37)

When the system interacts with a large environment, one can work in the continuum limit and have a replacement \(\sum _{k} \vert g_{k} \vert ^{2}\longrightarrow \int d\omega J(\omega ) \delta (\omega _{k}-\omega )\), where \(J(\omega )\) is the spectral density of the environment [34, 35]. Using the second-order time-convolutionless master equation [1, 2] at zero temperature, one can find the master equation appeared in Eq. (24) . This model can be described in the Kraus representation form as

$$\begin{aligned} \rho ^{\mathcal {S}}(t)=\sum _{i=1}^{2} D_{i}(t)\rho ^{\mathcal {S}}(0)D_{i}^{\dag }(t), \end{aligned}$$
(38)

where the Kraus operators \(D_{i}(t)\) are given by

$$\begin{aligned} D_{1}(t)=\sqrt{\frac{1+\hbox {e}^{-\varGamma (t)}}{2}} \, I, \quad D_{2}(t)=\sqrt{\frac{1-\hbox {e}^{-\varGamma (t)}}{2}}\, \sigma _{z}. \end{aligned}$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseli, S., Salimi, S. & Khorashad, A.S. A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf Process 14, 3581–3594 (2015). https://doi.org/10.1007/s11128-015-1052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1052-7

Keywords

Navigation