Skip to main content
Log in

Quantum discord of ensemble of quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We highlight an information-theoretic meaning of quantum discord as the gap between the accessible information and the Holevo bound in the framework of ensemble of quantum states. This complementary relationship implies that a large amount of preexisting arguments about the evaluation of quantum discord can be directly applied to the accessible information and vice versa. For an ensemble of two pure qubit states, we show that one can avoid the optimization problem with the help of the Koashi–Winter relation. Further, for the general case (two mixed qubit states), we recover the main results presented by Fuchs and Caves (Phys Rev Lett 73:3047, 1994), but totally from the perspective of quantum discord. Following this line of thought, we also investigate the geometric discord as an indicator of quantumness of ensembles in detail. Finally, we give an example to elucidate the difference between quantum discord and geometric discord with respect to optimal measurement strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  4. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  5. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  6. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  7. Fuchs, C.A.: Just Two Nonorthogonal Quantum States. arXiv:9810032

  8. Fuchs, C.A., Caves, C.M.: Ensemble-dependent bounds for accessible information in quantum mechanics. Phys. Rev. Lett. 73, 3047 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Fuchs, C.A.: Distinguishability and accessible information in quantum theory. Ph.D. thesis, The University of New Mexico, Albuquerque, NM, 1996. arXiv:9601020

  10. Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the “quantumness” of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Fuchs, C.A., Sasaki, M.: The quantumness of a set of quantum states. arXiv:0302108

  12. Audenaert, K.M.R., Fuchs, C.A., King, C., Winter, A.: Multiplicativity of accessible fidelity and quantumness for sets of quantum states. Quantum Inf. Comput. 4, 1 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038 (1996)

    Article  ADS  Google Scholar 

  14. Fuchs, C.A.: Information gain vs. state disturbance in quantum theory. Fortschr. Phys. 46, 535 (1998)

    Article  MathSciNet  Google Scholar 

  15. Horodecki, M., Horodecki, P., Horodecki, R., Piani, M.: Quantumness of ensemble from no-broadcasting principle. Int. J. Quantum. Inf. 4, 105 (2006)

    Article  MATH  Google Scholar 

  16. Horodecki, M., Sen(De), A., Sen, U.: Quantification of quantum correlation of ensembles of states. Phys. Rev. A 75, 062329 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. Luo, S., Li, N., Cao, X.: Relative entropy between quantum ensembles. Period. Math. Hung. 59, 223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, S., Li, N., Sun, W.: How quantum is a quantum ensemble? Quantum Inf. Process. 9, 711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, S., Li, N., Fu, S.: Quantumness of quantum ensembles. Theor. Math. Phys. 169, 1724 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, X., Pang, S., Wu, S., Liu, Q.: The classicality and quantumness of a quantum ensemble. Phys. Lett. A 375, 1855 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kholevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Prob. Peredachi Inf. 9, 3 (1973)

    MATH  Google Scholar 

  22. Kholevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Prob. Inf. Transm. 9, 177 (1973)

    MathSciNet  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Davies, E.B.: Information and quantum measurement. IEEE Trans. Inf. Theory 24, 596 (1978)

    Article  MATH  Google Scholar 

  25. Peres, A., Wootters, W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66, 1119 (1991)

    Article  ADS  Google Scholar 

  26. Hausladen, P., Wootters, W.K.: A ‘pretty good’ measurement for distinguishing quantum states. J. Modern Opt. 41, 2385 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Jozsa, R., Robb, D., Wootters, W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49, 668 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  28. Sasaki, M., Barnett, S.M., Jozsa, R., Osaki, M., Hirota, O.: Accessible information and optimal strategies for real symmetrical quantum sources. Phys. Rev. A 59, 3325 (1999)

    Article  ADS  Google Scholar 

  29. Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J. Quantum. Inf. 09, 1643 (2011)

    Article  MathSciNet  Google Scholar 

  30. Koashi, M., Winter, S.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  31. Levitin, L.B.: Optimal quantum measurements for two pure and mixed states. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds.) Quantum Communications and Measurement. Plenum Press, New York (1995)

    Google Scholar 

  32. Dakić, B., Vedral, V., Brukner, C̆.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  33. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. Yao, Y.: Quantum discord in quantum random access codes and its connection to dimension witnesses. Phys. Rev. A 86, 062310 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Y. Yao wishes to thank Prof. Shunlong Luo for his helpful comments and valuable suggestions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11121403, 10935010 and 11074261) and the National 973 Program (Grant Nos. 2012CB922104 and 2014CB921402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Huang, JZ., Zou, XB. et al. Quantum discord of ensemble of quantum states. Quantum Inf Process 13, 1583–1594 (2014). https://doi.org/10.1007/s11128-014-0753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0753-7

Keywords

Navigation