Skip to main content
Log in

Construction of general quantum channel for quantum teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate teleportation and controlled teleportation of an arbitrary \(N\)-qubit state by using a multipartite entanglement channel. By establishing one-to-one correspondence between an \(N\)-qubit quantum state and a high-dimension quantum state, we construct a general quantum channel for quantum teleportation and controlled teleportation of an arbitrary \(N\)-qubit state. Furthermore, we generalize the definition of bipartite maximally entangled state for a multi-qubit system, and show that our teleportation protocols can be utilized not only to construct a variety of genuine multipartite entangled states, but also to identify and explore the capability of multipartite entanglement for quantum teleportation and controlled teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  3. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. Chen, P.X., Zhu, S.Y., Guo, G.C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  6. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)

    Article  ADS  Google Scholar 

  7. Zhao, M.J., Li, Z.G., Li-Jost, X., Fei, S.M.: Multiqubit quantum teleportation. J. Phys. A. Math. Theor. 45, 405303 (2012)

    Article  MathSciNet  Google Scholar 

  8. Liu, G.Y., Kuang, L.M.: Production of genuine entangled states of four atomic qubits. J. Phys. B. At. Mol. Opt. Phys. 42, 165505 (2009)

    Article  ADS  Google Scholar 

  9. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  10. Peng, Z.H., Zou, J., Liu, X.J.: Perfect quantum information processing with Dicke-class state. Eur. Phys. J. D-At. 58, 403–407 (2010)

    Article  ADS  Google Scholar 

  11. Gorbachev, V.N., Trubilko, A.I.: Quantum teleportation of EPR pair by three-particle entanglement. J. Exp. Theor. Phys. 91, 894–898 (2000)

    Article  ADS  Google Scholar 

  12. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48.1–48.9 (2002)

    Article  Google Scholar 

  13. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  15. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. Hein, M., Eisert, J., Briegel, H.J.: Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. Agrawal, P., Pradhan, B.: Task-oriented maximally entangled states. J. Phys. A. Math. Theor. 43, 235302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Zhou, J., Hou, G., Zhang, Y.: Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys. Rev. A 64, 012301 (2001)

    Article  ADS  Google Scholar 

  20. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  21. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  22. Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum. Inf. Process. 11, 23–40 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program under Grant No. 2013CB921804, the NSF under Grant No. 11075050 and 11274043, and the PCSIRTU under Grant No. IRT0964, the HPNSF under Grant No. 11JJ7001, and the Scientific Research Fund of Hunan Provincial Education Department, China (Grants Nos. 10A032 and 10C0698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, ZH., Zou, J., Liu, XJ. et al. Construction of general quantum channel for quantum teleportation. Quantum Inf Process 12, 2803–2811 (2013). https://doi.org/10.1007/s11128-013-0564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0564-2

Keywords

Navigation