Skip to main content
Log in

Experimental architecture of joint remote state preparation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Motivated by some previous joint remote preparation schemes, we first propose some quantum circuits and photon circuits that two senders jointly prepare an arbitrary one-qubit state to a remote receiver via GHZ state. Then, by constructing KAK decomposition of some transformation in SO(4), one quantum circuit is constructed for jointly preparing an arbitrary two-qubit state to the remote receiver. Furthermore, some deterministic schemes of jointly preparing one-qubit and two-qubit states are presented. Besides, the proposed schemes are extended to multi-sender and the partially entangled quantum resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen M. A., Chuang I. L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Barenco A., Bennett C. H., Cleve R., DiVincenzo D. P., Margolus N. H., Shor P. W., Sleator T., Smolin J. A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  3. Golub G. H., Van Loan C. F.: Matrix Computations. 3rd edn. John Hopkins Univ. Press, (1996)

  4. DiVincenzo, D. P., Smolin, J.: In Proceedings of the Workshop on Physics and Computation, PhysComp’94, IEEE Computer Society, Los Alamitos, CA, 1994, p. 14, (1994)

  5. Vidal G., Dawson C. M.: A universal quantum circuit for two-qubit transformations with three CNOT gates. Phys. Rev. A 69, 010301 (2004)

    Article  ADS  Google Scholar 

  6. Shende V., Markov I., Bullock S.: Minimal universal two-qubit quantum circuits. Phys. Rev. A 69, 062321 (2004)

    Article  ADS  Google Scholar 

  7. Khaneja N., Brockett R., Glaser S. J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  8. Kraus B., Cirac J. I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63, 062309 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bremner M. J., Dawson C. M., Dodd J. L., Gilchrist A., Harrow A. W., Mortimer D., Nielsen M. A., Osborne T. J.: Practical scheme for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett. 89, 247902 (2002)

    Article  ADS  Google Scholar 

  10. Bullock S. S., Markov I. L.: Arbitrary two-qubit quantum computation in twenty-three elementary gates. Phys. Rev. A 68, 012318 (2003)

    Article  ADS  Google Scholar 

  11. Vatan F., Williams C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69, 032315 (2004)

    Article  ADS  Google Scholar 

  12. : Sur certaines formes riemanniennes remarquables des géométriesa groupe fondamental simple. Ann. Sci. Ec. Normale Super. 44, 345 (1927)

    MathSciNet  Google Scholar 

  13. Khaneja N., Glaser S.: Cartan decomposition of SU(n) and Control of Spin Systems. Chem. Phys. 267, 11–23 (2001)

    Article  ADS  Google Scholar 

  14. Paige C. C., Wei M.: History and generality of the CS decomposition. Linear Algebra Appl. 208(209), 303–326 (1994)

    Article  MathSciNet  Google Scholar 

  15. Tucci, R. R.: A Rudimentary Quantum Compiler, 2nd edn. quant-ph/9902062, (1999)

  16. Knill E., Laflamme R., Milburn G.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  17. Bennett C. H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W. K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bouwmeester D., Pan J. W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  19. Furusawa A., Sørensen J. L., Braunstein S. L., Fuchs C. A., Kimble H. J., Polzik E. S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  20. Nielsen M. A., Knill E., Laflamme R.: Complete quantum teleportation. Nature 396, 52–55 (1998)

    Article  ADS  Google Scholar 

  21. Riebe M., Häffner H., Roos C. F., Hänsel W., Benhelm J., Lancaster G. P. T., Körber T. W., Becher C., Schmidt-Kaler F., James D. F. V., Blatt R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  22. Chen X. B., Zhang N., Lin S., Wen Q. Y., Zhu F. C.: Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Opt. Commun. 281, 2331–2335 (2008)

    Article  ADS  Google Scholar 

  23. Lloyd S., Braunstein S. L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Gottesman D., Kitaev A., Preskill J.: Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001)

    Article  ADS  Google Scholar 

  25. O’Brien J. L., Pryde G. J., White A. G., Ralph T. C., Branning D.: Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003)

    Article  ADS  Google Scholar 

  26. Ralph T. C., Langford N. K., Bell T. B., White A. G.: Linear optical CNOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002)

    Article  ADS  Google Scholar 

  27. Pan J. W., Gasparoni S., Ursin R., Weihs G., Zeilinger A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

  28. O’Brien J. L.: Optical quantum computing. Science 318, 1567 (2007)

    Article  ADS  Google Scholar 

  29. Kok P., Munro W. J., Nemoto K., Ralph T. C., Dowling J. P., Milburn G. J.: Linear optical quantum computing with photonic qubits. Rev. Modern Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  30. Yamamoto T., Hayashi K., Ozdemir S. K., Koashi M., Imoto N.: Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace. Nature Photonics 2, 488 (2008)

    Article  Google Scholar 

  31. Chen J., Altepeter J. B., Medic M., Lee K. F., Gokden B., Hadfield R. H., Nam S. W., Kumar P.: Demonstration of a quantum Controlled-NOT gate in the telecommunications band. Phys. Rev. Lett. 100, 133603 (2008)

    Article  ADS  Google Scholar 

  32. Clark A. S., Fulconis J., Rarity J. G., Wadsworth W. J., O’Brien J. L.: All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009)

    Article  ADS  Google Scholar 

  33. Xia Y., Song J., Song H. S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946–4950 (2008)

    Article  ADS  Google Scholar 

  34. Liu W. T., Wu W., Ou B. Q., Chen P. X., Li C. Z., Yuan J. M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  35. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 81, 042301 (2010)

    Article  Google Scholar 

  36. Rosenfeld W., Berner S., Volz J., Weber M., Weinfurter H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  37. Xia Y., Song J., Song H. S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40, 3719–3724 (2007)

    Article  ADS  Google Scholar 

  38. Nguyen B. A., Kim J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  39. Nguyen B. A.: Joint remote preparation of a general two-qubit state. J. Phys. B: At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  Google Scholar 

  40. Luo M. X., Chen X. B., Ma S. Y., Yang Y. X., Niu X. X.: Joint remote preparation of an arbitrary three-qubit state, Opt. Commun 283, 497–501 (2010)

    ADS  Google Scholar 

  41. Lo H. K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  42. Pati A. K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  43. Bennett C. H., DiVincenzo D. P., Shor P. W., Smolin J. A., Terhal B. M., Wootters W. K.: Remote state preparation, Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  44. Devetak I., Berger T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 177901 (2001)

    Article  ADS  Google Scholar 

  45. Berry D. W., Sanders B. C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  46. Hayashi A., Hashimoto T., Horibe M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  47. Abeyesinghe A., Hayden P.: Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)

    Article  ADS  Google Scholar 

  48. Leung D. W., Shor P. W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  49. Ye M. Y., Zhang Y. S., Guo G. C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  50. Pan J. W., Bouwmeester D., Daniell M., Weinfurter H., Zeilinger A.: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515 (2000)

    Article  ADS  Google Scholar 

  51. Peng X., Zhu X., Fang X., Feng M., Liu M., Gao K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  52. Peters N. A., Barreiro J. T., Goggin M. E., Wei T. C., Kwiat P. G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  53. Xiang G. Y., Li J., Bo Y., Guo G. C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  54. Simon R., Mukunda N.: Minimal three-component SU(2) gadget for polarization optics. Phys. Lett. A 143, 165 (1990)

    Article  ADS  Google Scholar 

  55. Greenberger D. M., Horne A. M., Zeilinger A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 73–76. Kluwer, Dordrecht (1989)

    Google Scholar 

  56. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?.  Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  57. Luo M. X., Chen X. B., Ma S. Y., Yang Y. X., Hu Z. M.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  58. Bennett C. H., Bernstein H. J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  59. Zhao Z., Pan J. W., Zhan M. S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  60. Wang T. J., Zhou H. Y., Deng F. G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements. Phys. A 387(18), 4716 (2008)

    Article  MathSciNet  Google Scholar 

  61. Wang Z. Y., Liu Y. M., Wang D., Zhang Z. J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276(2), 322 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, MX., Chen, XB., Yang, YX. et al. Experimental architecture of joint remote state preparation. Quantum Inf Process 11, 751–767 (2012). https://doi.org/10.1007/s11128-011-0283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0283-5

Keywords

Navigation