Skip to main content
Log in

An analytic approach to the problem of separability of quantum states based upon the theory of cones

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as ρ = (1−λ)C ρ  + λE ρ , where C ρ is a separable matrix whose rank equals that of ρ and the rank of E ρ is strictly lower than that of ρ. With the simple choice \({C_{\rho}=M_{1}\otimes M_{2}}\) we have a necessary condition of separability in terms of λ, which is also sufficient if the rank of E ρ equals 1. We give a first extension of this result to detect genuine entanglement in multipartite states and show a natural connection between the multipartite separability problem and the classification of pure states under stochastic local operations and classical communication. We argue that this approach is not exhausted with the first simple choices included herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger E.: Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  2. Gisin N.: Quantum nonlocality: how does nature do it?. Science 326, 1357 (2009)

    Article  ADS  Google Scholar 

  3. Wang X.-B., Hiroshima T., Tomita A., Hayashi M.: Quantum information with Gaussian states. Phys. Rep. 448, 1 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  4. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Woronowicz S.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 8 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Horodecki P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Rudolph O.: Further results on the cross norm criterion for separability. Quant. Inf. Process 4, 219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen K., Wu L.-A.: A matrix realignment method for recognizing entanglement. Quant. Inf. Comp. 3, 193 (2003)

    MATH  Google Scholar 

  11. Lewenstein M., Bruss D., Cirac J., Kraus B., Samsonowicz J., Sanpera A., Tarrach R.: Separability and distillability in composite quantum systems-a primer. J. Mod. Opt. 47, 2841 (2000a)

    MathSciNet  Google Scholar 

  12. Plenio M., Virmani S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gühne O., Tóth G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Doherty A., Parrilo P., Spedalieri M.: Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002)

    Article  ADS  Google Scholar 

  16. Doherty A., Parrilo P., Spedalieri F.: A complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)

    Article  ADS  Google Scholar 

  17. Pérez-García D.: Deciding separability with a fixed error. Phys. Lett. A 330, 149 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Terhal B.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Lewenstein M., Kraus B., Cirac J.I., Horodecki P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  20. Bruss D., Cirac J.I., Horodecki P., Hulpke F., Kraus B., Lewenstein M., Sanpera A.: Reflections upon separability and distillability. J. Mod. Opt. 49, 1399 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hill R., Waters S.: On the cone of positive semidefinite matrices. Lin. Alg. Appl. 90, 81 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewenstein M., Sanpera A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261 (1998)

    Article  ADS  Google Scholar 

  24. Karnas S., Lewenstein M.: Separable approximations of density matrices of composite quantum systems. J. Phys. A Math. Gen. 34, 6919 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  26. Lamata L., León J., Salgado D., Solano E.: Inductive classification of multipartite entanglement under SLOCC. Phys. Rev. A 74, 052336 (2006)

    Article  ADS  Google Scholar 

  27. Werner R.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  28. Barker G.: Theory of cones. Lin. Alg. Appl. 39, 263 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gühne O., Lütkenhaus N.: Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states. J. Phys. C Conf. Ser. 67, 012004 (2007)

    Article  ADS  Google Scholar 

  30. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 10–19. See also quant-ph/0303055 (2003)

  31. Horn R., Johnson C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  32. Pittenger A., Rubin M.: Note on separability of the Werner states in arbitrary dimensions. Opt. Comm. 179, 447 (2000)

    Article  ADS  Google Scholar 

  33. Deng D.-L., Chen J.-L.: Sufficient and necessary condition of separability for generalized Werner states. Ann. Phys. 324, 408 (2008)

    MathSciNet  ADS  Google Scholar 

  34. Eisert, J., Gross, D.: Multiparticle entanglement. In: Bruss, D., Leuchs, G. Lectures on Quantum Information., Wiley-VCH, Weinheim (2006)

  35. Greenberger D., Horne M., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  36. Bastin T., Krins S., Mathonet P., Godefroid M., Lamata L., Solano E.: Operational families of entanglement classes for symmetric N-qubit states. Phys. Rev. Lett. 103, 070503 (2009)

    Article  ADS  Google Scholar 

  37. van Loan C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13, 76 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Churchill R., Brown J.: Complex Variables and Its Applications. McGraw Hill, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Salgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, D., Sánchez-Gómez, J.L. & Ferrero, M. An analytic approach to the problem of separability of quantum states based upon the theory of cones. Quantum Inf Process 10, 633–651 (2011). https://doi.org/10.1007/s11128-010-0223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0223-9

Keywords

Navigation