Skip to main content
Log in

A Characterization of Global Entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

We define a set of 2n−1−1 entanglement monotones for n qubits and give a single measure of entanglement in terms of these. This measure is zero except on globally entangled (fully inseparable) states. This measure is compared to the Meyer–Wallach measure for two, three, and four qubits. We determine the four-qubit state, symmetric under exchange of qubit labels, which maximizes this measure. It is also shown how the elementary monotones may be computed as a function of observable quantities. We compute the magnitude of our measure for the ground state of the four-qubit superconducting experimental system investigated in [M. Grajcar et al., Phys. Rev. Lett. 96, 047006 (2006)], and thus confirm the presence of global entanglement in the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Einstein A., Podolsky B., Rosen N. (1935) Phys. Rev. 47, 777

    Article  MATH  ADS  Google Scholar 

  2. Bell J.S. (1966) Rev. Mod. Phys. 38, 447

    Article  MATH  ADS  Google Scholar 

  3. Aspect A., Grangier P., Roger G. (1981) Phys. Rev. Lett. 47, 460

    Article  ADS  Google Scholar 

  4. Vidal G. (2003) Phys. Rev. Lett. 91, 147902

    Article  ADS  Google Scholar 

  5. Gisin N., Ribordy G.G., Tittel W., Zbinden H. (2002) Rev. Mod. Phys. 74, 145

    Article  ADS  Google Scholar 

  6. The straightforward generalizations to time-dependent Hamiltonians, thermal mixtures [see around (11)], incoherent evolution, etc. will not be given separately.

  7. Carteret H.A., Higuchi A., Sudbery A. (2002) J. Math. Phys. 41, 7932

    Article  ADS  MathSciNet  Google Scholar 

  8. Linden N., Popescu S., Sudbery A. (1999) Phys. Rev. Lett. 83, 243

    Article  ADS  Google Scholar 

  9. Wootters W.K. (1998) Phys. Rev. Lett. 80, 2245

    Article  ADS  Google Scholar 

  10. D. A. Meyer and N. R. Wallach, In (R. K. Brylinski and G. Chen) The Mathematics of Quantum Computation (CRC Press, Boca Raton, 2002), p. 77.

  11. Vidal G. (2000) J. Mod. Opt. 47, 355

    Article  ADS  MathSciNet  Google Scholar 

  12. Meyer D.A., Wallach N.R. (2002) J. Math. Phys. 43, 4273

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Bourennane M. et al. (2005) Phys. Rev. Lett. 92, 087902

    Article  ADS  Google Scholar 

  14. Wallach N.R. (2005) Acta. Appl. Math. 86, 203

    Article  MATH  MathSciNet  Google Scholar 

  15. Dur W., Vidal G., Cirac J.I. (2000) Phys. Rev. A 62, 062314

    Article  ADS  MathSciNet  Google Scholar 

  16. Brennen G.K. (2003) Quant. Inf. Comput. 3, 616

    MathSciNet  Google Scholar 

  17. D. M. Greenberger, M. Horne, and A. Zeilinger, In M. Kafatos (ed.), Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Kluwer, Boston (1989).

  18. Nielsen M.A., Chuang I.L. (2000) Quantum computation, and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Scott A.J. (2004) Phys. Rev. A 69, 052330

    Article  ADS  Google Scholar 

  20. Yu C.-S., Song H.-S. (2006) Phys. Rev. A 73, 022325

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Osterloh and J. Siewert, Phys. Rev. A 72, 012337 (2005); A. Osterloh and J. Siewert, Int. J. Quant. Inf. 4, 531 (2006), quant-ph/0506073.

    Google Scholar 

  22. Grajcar M. et al. (2006) Phys. Rev. Lett. 96, 047006

    Article  ADS  Google Scholar 

  23. Greenberg Ya.S. et al. (2002) Phys. Rev. B 66, 224511

    Article  ADS  Google Scholar 

  24. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D. (2001) Science 292, 472

    ADS  MathSciNet  Google Scholar 

  25. Havel T.F. (2002) Quant. Inf. Processing 1, 511

    Article  MathSciNet  Google Scholar 

  26. Aschauer H., Calsamiglia J., Hein M., Briegel H.J. (2004) Quant. Inf. Comput. 4, 383

    MathSciNet  Google Scholar 

  27. G. A. Paz-Silva and J. H. Reina, quant-ph/0603102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, P.J., van den Brink, A.M., Smirnov, A.Y. et al. A Characterization of Global Entanglement. Quantum Inf Process 6, 187–195 (2007). https://doi.org/10.1007/s11128-007-0052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-007-0052-7

Keywords

PACS

Navigation