Skip to main content
Log in

How Well Do People Play a Quantum Prisoner’s Dilemma?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Game theory suggests quantum information processing technologies could provide useful new economic mechanisms. For example, using shared entangled quantum states can alter incentives so as to reduce the free-rider problem inherent in economic contexts such as public goods provisioning. However, game theory assumes players understand fully the consequences of manipulating quantum states and are rational. Its predictions do not always describe human behavior accurately. To evaluate the potential practicality of quantum economic mechanisms, we experimentally tested how people play the quantum version of the prisoner’s dilemma game in a laboratory setting using a simulated version of the underlying quantum physics. Even without formal training in quantum mechanics, people nearly achieve the payoffs theory predicts, but do not use mixed-strategy Nash equilibria predicted by game theory. Moreover, this correspondence with game theory for the quantum game is closer than that of the classical game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aumann and S. Hart (eds.), Handbook of Game Theory with Economics Applications, Vol. 1 (Elsevier, 1992).

  2. Axelrod R., Hamilton W. (1981). Science 211: 1390

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  3. R. Axelrod, in Genetic Algorithms and Simulated Annealing, edited by L. Davis Chapter 3, (Morgan Kaufmann, Los Altos, CA, 1987). pp. 32–41.

  4. Bagnoli M., Lipman B.L. (1989). Rev. Econ. Stud. 56, 583

    Article  MATH  MathSciNet  Google Scholar 

  5. Benjamin S.C., Hayden P.M. (2001). Phys. Rev. A 64, 030301

    Article  ADS  Google Scholar 

  6. C. Camerer, in The Handbook of Experimental Economics, edited by J. Kagel and A. E. Roth chapter 8, (Princeton University Press, 1995) pp. 587–703.

  7. Camerer C., Ho T., Chong J.-K. (2004). Quart. J. E. 119(3): 861

    Article  MATH  Google Scholar 

  8. K.-Y. Chen, T. Hogg, and R. Beausoleil, Quant. Inform. Process., 1, 449 (2002). arxiv.org preprint quant-ph/0301013.

  9. K.-Y. Chen and R. Wu, in Proceeding of the 5th International Conference on Enterprise Information Systems (ICEIS), April 2003.

  10. Du J., Li H., Xu X., Zhou X., Han R. (2002). Phys. Lett. A 302, 229 arxiv.org preprint quant-ph/0110122.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Du J., Li H., Xu X., Shi M., Wu J., Zhou X., Han R. (2002). Phys. Rev. Lett. 88, 137902 arxiv.org preprint quant-ph/0104087.

    Article  PubMed  ADS  Google Scholar 

  12. Eisert J., Wilkens M., Lewenstein M. (1999). Phys. Rev. Lett. 83: 3077 arxiv.org preprint quant-ph/9806088.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Eisert J., Wilkens M.J. (2000). Modern Optics 47: 2543 arxiv.org preprint quant-ph/0004076.

    Article  MATH  MathSciNet  Google Scholar 

  14. Feynman R.P. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press, NJ

    Google Scholar 

  15. Glance N.S., Huberman B.A. (1994). Scientific American 270(3): 76

    Article  Google Scholar 

  16. Groves T., Ledyard J.O. (1977). Econometrica 45, 783

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardin G. (1968). Science 162: 1243

    Article  ADS  Google Scholar 

  18. Huberman B.A., Hogg T. (2003). Quant. Inform. Process. 2: 421 arxiv.org preprint quant-ph/0306112.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Ledyard, in Handbook of Experimental Economics, edited by J. Kagel and A. Roth, chapter 2, (Princeton University Press, 1995) pp. 111–181.

  20. Meyer D.A. (1999). Phys. Rev. Lett. 82: 1052 arxiv.org preprint quant-ph/9804010.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. D. A. Meyer, in Quantum Communication, Measurement and Computing, Vol. 734, AIP Conference Proceedings, 2004, pp. 36–39.

  22. P. L. Mura, arxiv.org preprint quant-ph/0309033, (2003).

  23. Noreen E. (1989). Computer-Intensive Methods for Testing Hypotheses. John Wiley, NY

    Google Scholar 

  24. T. R. Palfrey and H. Rosenthal, in Laboratory Research in Political Economy, edited by T. R. Palfrey (University of Michigan Press, 1991), pp. 239–267.

  25. Thaler R.H. (1988). J. Econ. Perspect. 2(4): 195

    Google Scholar 

  26. van Enk S.J., Pike R. (2002). Phys. Rev. A 66: 024306

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhang L., Hogg T. (2003). Intl. J. Quant. Inform. 1(3): 321

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay-Yut Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KY., Hogg, T. How Well Do People Play a Quantum Prisoner’s Dilemma?. Quantum Inf Process 5, 43–67 (2006). https://doi.org/10.1007/s11128-006-0012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0012-7

Keywords

Pacs

Navigation