Skip to main content
Log in

A comparison of different algorithms for the delineation of management zones

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

One approach to the application of site-specific techniques and technologies in precision agriculture is to subdivide a field into a few contiguous homogenous zones, often referred to as management zones (MZs). Delineating MZs can be based on some sort of clustering, however there is no widely accepted method. The application of fuzzy set theory to clustering has enabled researchers to account better for the continuous variation in natural phenomena. Moreover, the methods based on non-parametric density estimation can detect clusters of unequal size and dispersion. The objectives of this paper were to: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with potential yield. One hundred georeferenced point measurements of soil and crop properties were obtained from a 12 ha field cropped with durum wheat for two seasons. The trial was carried out at the experimental farm of CRA-CER in Foggia (Italy). All variables were interpolated on a 1 × 1 m grid using the geostatistical techniques of kriging and cokriging. The techniques compared to identify MZs were: (1) the ISODATA method, (2) the fuzzy c-means algorithm and (3) a non-parametric density algorithm. The ISODATA method, which was the simplest, subdivided the field into three distinct classes of suitable size for uniform management, whereas the other two methods created two classes. The non-parametric density algorithm characterized the edge properties between adjacent clusters more efficiently than the fuzzy method. The clusters from the non-parametric density algorithm and yield maps for three seasons (2005–2006, 2006–2007 and 2007–2008) were compared and agreement measures were computed. The kappa coefficients for the three seasons were negative or small positive values which indicate only slight agreement. These results illustrate the importance of temporal variation in spatial variation of yield in rainfed conditions, which limits the use of the MZ approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The location of the boundary where the maximum value of the density function occurs.

References

  • Basso, B., Bertocco, M., Sartori, L., & Martin, E. C. (2007). Analyzing the effects of climate variability on spatial of yield in a maize-wheat-soybean rotation. European Journal of Agronomy, 6, 82–91.

    Article  Google Scholar 

  • Basso, B., Ritchie, J. T., Pierce, F. J., Braga, R. P., & Jones, J. W. (2001). Spatial validation of crop models for precision agriculture. Agricultural Systems, 68, 97–112.

    Article  Google Scholar 

  • Bhatti, A. U., Mulla, D. J., Koehler, F. E., & Gurmani, A. H. (1991). Identifying and removing spatial correlation from yield experiments. Soil Science Society of America Journal, 55, 1523–1528.

    Article  Google Scholar 

  • Blackmore, B. S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture, 26, 37–51.

    Article  Google Scholar 

  • Boydell, B., & McBratney, A. B. (2002). Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 3, 9–23.

    Article  Google Scholar 

  • Burrough, P. A. (1989). Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science, 40, 477–492.

    Article  Google Scholar 

  • Carr, P. M., Carlson, G. R., Jacobsen, J. S., Nielsen, G. A., & Skogley, E. O. (1991). Farming soils, not fields: a strategy for increasing fertilizer profitability. Journal of Production Agriculture, 4, 57–61.

    Google Scholar 

  • Castrignanò, A., Basso, B., Pisante, M., Buttafuoco, G., Troccoli, A., Cucci, G., & Fiorentino, C. (2008). Delineating management zones using crop and soil variables with a multivariate geostatistic approach. In [CD-ROM] Proceedings of the 9th international conference on precision agriculture, Denver.

  • Castrignanò, A., Buttafuoco, G., Pisante, M., & Lopez, N. (2006a). Estimating within-field variation using a nonparametric density algorithm. Environmetrics, 17, 465–481.

    Article  Google Scholar 

  • Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97, 39–60.

    Article  Google Scholar 

  • Castrignanò, A., Morari, F., & Morelli, G. (2006b). Assessment of spatial relationship between some soil properties and electromagnetic induction scans. In [CD-ROM] Agricultural engineering for a better world. XVI CGR world congress, Bonn (pp. 1–6). Dusseldorf, Germany: VDI Verlag GmbH. ISBN/ISSN: 3180919582.

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • De Benedetto, D., Sollitto, D., Guastaferro, F., Castrignanò, A., & Colecchia, S. (2009). Delineation of management zones using topographical data and geophysical ECa measurements. In G. Giametta & G. Zimbaletti (Eds.), Proceedings of XXXIII CIOSTACIGR V conference 2009, technology and management to ensure sustainable agriculture, agro-systems, forestry and safety (pp. 831–835). Reggio Calabria, Italy. DISTAFA, Artemis (Italy).

  • Diker, K., Heermann, D. F., & Brodahl, M. K. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5, 435–444.

    Article  Google Scholar 

  • ESRI Environmental Systems Research Institute. (1994). Grid commands. Redlands, CA: ESRI.

    Google Scholar 

  • Fleiss, J. L. (1981). Statistical methods for rates and proportions. New York: Wiley.

    Google Scholar 

  • Fleming, K. L., Westfall, D. G., Wiens, D. W., & Brodah, M. C. (2000). Evaluating farmer developed management zone maps for variable rate fertilizer application. Precision Agriculture, 2, 201–215.

    Article  Google Scholar 

  • Fraisse, C. W., Sudduth, K. A., & Kitchen, N. R. (2001). Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Transactions of the American Society of Agricultural and Biological Engineers, 44, 155–166.

    Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management Zone Analyst (MZA): Software for subfield management zone delineation. Agronomy Journal, 96, 100–108.

    Article  Google Scholar 

  • Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L., & Holmes, K. (2000). Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64, 2046–2056.

    Article  CAS  Google Scholar 

  • Géovariances. (2009). Isatis Technical Ref., ver. 9.06. Geovariances & Ecole Des Mines De Paris: Avon Cedex, France.

  • Gitman, I. (1973). An algorithm for nonsupervised pattern classification. IEE Transactions on Systems, Man and Cybernetics, SMC-, 3, 66–74.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Hartigan, J. A., & Hartigan, M. (1985). The dip test of unimodality. Annals of Statistics, 13, 70–84.

    Article  Google Scholar 

  • Huizinga, D. H. (1978). A natural or mode seeking cluster analysis algorithm. Technical report 78-1. Boulder, Colorado: Behavioral Research Institute.

    Google Scholar 

  • Irvin, B. J., Ventura, S. J., & Slater, B. K. (1997). Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma, 77, 137–154.

    Article  Google Scholar 

  • Johnson, R. M., & Richard, E. P. (2003). Evaluation of crop and soil spatial variability in Louisiana sugarcane production systems. In Precision agriculture [CD-ROM]. Proceedings of the 6th international conference. Minneapolis, MN: ASA, CSSA, and Madison, WI: SSSA.

  • Lark, R. M. (1998). Forming spatially coherent regions by classification of multivariate data: An example from the analysis of maps of crop yield. International Journal of Geographical Information Science, 12, 83–98.

    Article  Google Scholar 

  • Li, Y., Shi, Z., Li, F., & Li, H. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture, 56, 174–186.

    Article  Google Scholar 

  • McCann, B. L., Pennock, D. J., van Kessel, C., & Walley, F. L. (1996). The development of management units for site specific farming. In P. C. Robert et al. (Eds.), Proceedings of the 3rd international conference on precision agriculture (pp. 295–302). Madison, WI: ASA, CSSA, and SSSA.

  • McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12, 153–157.

    Article  CAS  PubMed  Google Scholar 

  • Moore, I. D., Gessler, P. E., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.

    Article  Google Scholar 

  • Morari, F., Castrignanò, A., & Pagliarin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 69, 97–107.

    Article  Google Scholar 

  • Moulin, A. P., Beckie, H. J., & Pennock, D. J. (1998). Strategies for variable rate nitrogen fertilization in hummocky terrain. Canadian Journal of Soil Science, 77, 589–595.

    Google Scholar 

  • Mulla, D. J. (1991). Using geostatistics and GIS to manage spatial patterns in soil fertility. In G. Kranzler (Ed.), Proceedings of Automated Agriculture for the 21st Century (pp. 336–345). St. Joseph, MI: SAE.

    Google Scholar 

  • Nolan, S. C., Goddard, T. W., & Lohstraeter, G. (2000). Assessing management units on rolling topography. In Precision agriculture [CD-ROM]. Proceedings of the 5th international conference on precision and other resource management. Madison, WI: ASA, CSSA, and SSSA.

  • Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1992). Soil pattern recognition with fuzzy-c-means: application to classification and soil–landform interrelationships. Soil Science Society of America Journal, 56, 505–516.

    Article  Google Scholar 

  • Pagliai, M. (1997). Metodi di analisi fisica del suolo (Physical methods of soil analysis). Italian Ministry of Agriculture. Milan: Franco Angeli. (in Italian).

    Google Scholar 

  • [RSI] Research Systems Incorporated. (1999). ENVI user’s guide. Version 3.2. Boulder, CO: RSI.

    Google Scholar 

  • Sarle, W. S. (1982). Cluster analysis by least squares. In Proceedings of the seventh annual SAS users group international conference (pp. 651–653). Cary, NC: SAS Institute Inc.

  • SAS/STAT Software Release 9.2. (2008). Cary, NC: SAS Institute Inc.

  • Scott, D. W. (1992). Multivariate density estimation: theory, practice, and visualization. New York: Wiley.

    Book  Google Scholar 

  • Silverman, B. W. (1986). Density estimation. New York: Chapman and Hall.

    Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy (second edition). Washington, DC: USDA, National natural resources Conservation Service.

  • Stafford, J. V., Lark, R. M., & Bolam, H. C. (1998). Using yield maps to regionalize fields into potential management units. In P. C. Robert et al. (Eds.), Proceedings of the 4th international conference on precision agriculture (pp. 225–237). Madison, WI: ASA, CSSA, and SSSA.

  • Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Violante, P. (2000). Metodi di analisi chimica del suolo (Chemical methods of soil analysis), Italian Ministry of Agriculture. Milan: Franco Angeli.

    Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed., p. 388). Berlin: Springer Verlag.

Download references

Acknowledgements

The authors wish to thank Dr. Newell R. Kitchen and Dr. Scott T. Drummond of USDA-ARS, Cropping Syst. and Water Quality Res. Unit, Columbia, MO 65211 for their valid assistance in using MZA software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Castrignanò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guastaferro, F., Castrignanò, A., De Benedetto, D. et al. A comparison of different algorithms for the delineation of management zones. Precision Agric 11, 600–620 (2010). https://doi.org/10.1007/s11119-010-9183-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9183-4

Keywords

Navigation