Skip to main content
Log in

AMM cladding fiber for coupled plasmonic propagation and core guidance

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Dual effect of surface plasmon propagation and classical core guidance is made possible in this work with the integration of metamaterial in a fiber. Here, the alternate layers of \(\hbox {TiO}_{2}\) and Ag form anisotropic metamaterial that helps in plasmonic propagation. The designed fiber with the proposed metamaterial as a cladding supports both normal core guidance and surface guidance at different wavelength based on their anisotropy. Parameters such as dispersion and confinement loss are analyzed at different wavelength. Simulation results are obtained to confirm the proper propagation of modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kearns, R.F., Basch, E.E.: Computer Analysis of Single-Mode Fiber Optic Systems. GTE Laboratories Incorporated, pp. 579–583 (1988)

  2. Noé, R.: Essentials of Modern Optical Fiber Communication, Springer (2010). doi:10.1007/978-3-662-49623-7

  3. Bass, M.: Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications. McGraw-Hill Professional, New York (2001)

    Google Scholar 

  4. Kawakami, S., Nishida, S.: Characteristics of a doubly clad optical fiber with a low-index inner cladding. IEEE J. Quantum Electron. 10(12), 879–887 (1974)

    Article  Google Scholar 

  5. Lapine, M., et al.: Contemporary notes on metamaterials. IET Microw. Antennas Propag. 1(1), 3–11 (2007)

  6. Vaselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10(4), 509–514 (1967)

    Article  Google Scholar 

  7. Yan, M., Mortensen, N.A., Qui, M.: Engineering Modes in Optical Fibers with Metamaterial. Springer, Berlin (2009)

    Google Scholar 

  8. Wenshan, C. et al.: Optical cloaking with metamaterials. Nature Photonics 1 (2007)

  9. Xiong, Y., et al.: Two-dimensional imaging by far-field superlens at visible wavelength. Nano Lett. 7(11), 3360–3365 (2007)

  10. Liu, H.-H. et al.: Leaky Surface Plasmon Polariton Modes at an Interface Between Metal and Uniaxially Anisotropic Materials, Vol. 5, No 6 (2013)

  11. Novitsky, A.V.: Negative-refractive-index fibres: TEM modes. J. Opt. A Pure Appl. Opt. 8(10) (2006)

  12. Qi, Z., Jiang, T., Feng, Y.: Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding. J. Phys. D: Appl. Phys. 44, 475103–475108 (2011)

  13. Tuniz, A.: Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nature Commun. 4, 2706 (2013)

  14. Anantha Ramakrishna, S. et al.: Anisotropic Metamaterial optical fibers: Bessel modes with imaginary orders and nanoporous alumina microtubes. International Conference on Fibre Optics and Photonics. ISBN: 978-1-55752-882-7 (2014)

  15. Pratap, D., et al.: Anisotropic Metamaterial Optical Fibers. Optical Society of America, New York (2014)

    Google Scholar 

  16. Awazu, K., et al.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc 130(5), 1676–1680 (2008)

    Article  Google Scholar 

  17. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12–15) (1972)

  18. Jakšić, Z.: Optical chemical sensors for industrial applications. In: International Symposium on Industrial Electronics (2014)

  19. Veselago, V., Braginsky, L., Shklover, V., Hafner, C.: Negative refractive index materials. J. Comput. Theor. Nanosci. 3, 1–30 (2006)

    Google Scholar 

  20. Mei, Y., et al.: Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008)

    Article  Google Scholar 

  21. Harrington, R.F.: Time-Harmonic Electromagnetic Fields. Wiley, New York (2001)

    Book  Google Scholar 

  22. Chen, H., Chan, C.T.: Electromagnetic wave manipulation using layered systems. Phys. Rev. B 78, 054204 (2008)

    Article  Google Scholar 

  23. Yan, M., et al.: Hollow-Core Infrared Fiber Incorporating Metal-Wire Metamaterial. Optical Society of America, New York (2010)

    Google Scholar 

  24. Barnes, W.L.: Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yamunadevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamunadevi, R., Sundar, D.S. & Raja, A.S. AMM cladding fiber for coupled plasmonic propagation and core guidance. Photon Netw Commun 33, 371–376 (2017). https://doi.org/10.1007/s11107-016-0653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0653-0

Keywords

Navigation