Skip to main content
Log in

Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-l-arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-l-arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor&Francis Group, LLC, New York

    Google Scholar 

  • Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci U S A 103:11417–11422

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buanafina MMD, Langdon T, Hauck B, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl Biochem Biotechnol 130:416–426

    Article  Google Scholar 

  • Buanafina MMDO, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol J 6:264–280

    Article  PubMed  CAS  Google Scholar 

  • Buanafina MMdO, Langdon T, Hauck B, Dalton S, Timms-Taravella E, Morris P (2010) Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotechnol J 8:316–331

    Article  PubMed  CAS  Google Scholar 

  • Capodicasa C, Vairo D, Zabotina O, McCartney L, Caprari C, Mattei B, Manfredini C, Aracri B, Benen J, Knox JP, De Lorenzo G, Cervone F (2004) Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. Plant Physiol 135:1294–1304

    Article  PubMed  CAS  Google Scholar 

  • Cavalier DM, Keegstra K (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J Biol Chem 281:34197–34207

    Article  PubMed  CAS  Google Scholar 

  • Chavez Montes RA, Ranocha P, Martinez Y, Minic Z, Jouanin L, Marquis M, Saulnier L, Fulton LM, Cobbett CS, Bitton F, Renou J-P, Jauneau A, Goffner D (2008) Cell wall modifications in arabidopsis plants with altered α-l-arabinofuranosidase activity. Plant Physiol 147:63–77

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–552

    Article  PubMed  Google Scholar 

  • Faik A, Bar-Peled M, DeRocher AE, Zeng W, Perrin RM, Wilkerson C, Raikhel NV, Keegstra K (2000) Biochemical characterization and molecular cloning of an alpha-1, 2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J Biol Chem 275:15082–15089

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G (2008) Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol 146:669–681

    Article  PubMed  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Gunawardena AHLAN, Pearce DME, Jackson MB, Hawes CR, Evans DE (2001) Rapid changes in cell wall pectic polysaccharides are closely associated with early stages of aerenchyma formation, a spatially localized form of programmed cell death in roots of maize (Zea mays L.) promoted by ethylene. Plant Cell Environ 24:1369–1375

    Article  CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller HV (2010a) Biosynthesis of Pectin. Plant Physiol 153:384–395

    Article  PubMed  CAS  Google Scholar 

  • Harholt J, Bach IC, Lind-Bouquin S, Nunan KJ, Madrid SM, Brinch-Pedersen H, Holm PB, Scheller HV (2010b) Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm. Plant Biotechnol J 8:351–362

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Wilke I, Sonnewald U (1995) A thermostable xylanase from clostridium-thermocellum expressed at high-levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio-Technology 13:63–66

    CAS  Google Scholar 

  • Jung S, Kim S, Bae H, Lim HS, Bae HJ (2010) Expression of thermostable bacterial beta-glucosidase (BglB) in transgenic tobacco plants. Bioresour Technol 101:7144–7150

    Article  CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Mizutani T, Tanaka T, Koyama T, Sakka K, Ohmiya K (2003) Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl Microbiol Biotechnol 62:374–379

    Article  PubMed  CAS  Google Scholar 

  • Lever M (1972) New reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Wightman R, Geshi N, Turner SR, Scheller HV (2010) Arabidopsis: a powerful model system for plant cell wall research. Plant J 61:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D’Ovidio R, De Lorenzo G, Cervone F (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci USA 107:616–621

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Casado G, Urbanowicz BR, Damasceno CMB, Rose JKC (2008) Plant glycosyl hydrolases and biofuels: a natural marriage. Curr Opin Plant Biol 11:329–337

    Article  PubMed  CAS  Google Scholar 

  • Magi B, Liberatori S (2005) Immunoblotting techniques. Methods Mol Biol 295:227–254

    PubMed  CAS  Google Scholar 

  • Maris A, Kaewthai N, Eklof JM, Miller JG, Brumer H, Fry SC, Verbelen JP, Vissenberg K (2011) Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. J Exp Bot 62:261–271

    Article  PubMed  CAS  Google Scholar 

  • McCann M, Rose J (2010) Blueprints for building plant cell walls. Plant Physiol 153:365

    Article  PubMed  CAS  Google Scholar 

  • McComb EA, McCready RM (1957) Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal Chem 29:819–821

    Article  CAS  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740

    Article  PubMed  CAS  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44:435–449

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K (2002) A genome-based approach to study the mechanisms by which cell-wall type is defined and constructed by the collaborative actions of cell-wall-related enzymes. J Plant Res 115:303–307

    Article  PubMed  CAS  Google Scholar 

  • Obro J, Borkhardt B, Harholt J, Skjot M, Willats WGT, Ulvskov P (2009) Simultaneous in vivo truncation of pectic side chains. Transgenic Res 18:961–969

    Article  PubMed  CAS  Google Scholar 

  • Oomen RJFJ, Doeswijk-Voragen CHL, Bush MS, Vincken JP, Borkhardt B, van den Broek LAM, Corsar J, Ulvskov P, Voragen AGJ, McCann MC, Visser RGF (2002) In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J 30:403–413

    Article  PubMed  CAS  Google Scholar 

  • Oxenboll Sorensen S, Pauly M, Bush M, Skjot M, McCann MC, Borkhardt B, Ulvskov P (2000) Pectin engineering: modification of potato pectin by in vivo expression of an endo-1, 4-beta-d-galactanase. Proc Natl Acad Sci U S A 97:7639–7644

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue G-P (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–124

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    Google Scholar 

  • Somerville CR, Bonetta D (2001) Plants as factories for technical materials. Plant Physiol 125:168–171

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    Article  PubMed  CAS  Google Scholar 

  • Sticklen M (2007) Feedstock crop genetic engineering for alcohol fuels. Crop Sci 47:2238–2248

    Article  CAS  Google Scholar 

  • Yang P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Fan Y, Yao B (2007) Expression of xylanase with high specific activity from Streptomyces olivaceoviridis A1 in transgenic potato plants (Solanum tuberosum L.). Biotechnol Lett 29:659–667

    Article  PubMed  CAS  Google Scholar 

  • Zabotin AI, Barisheva TS, Trofimova OI, Toroschina TE, Larskaya IA, Zabotina OA (2009) Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat. Plant Physiol Biochem 47:854–858

    Article  PubMed  CAS  Google Scholar 

  • Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008a) Arabidopsis XXT5 gene encodes a putative alpha-1, 6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J 56:101–115

    Article  PubMed  CAS  Google Scholar 

  • Zabotina O, Malm E, Drakakaki G, Bulone V, Raikhel N (2008b) Identification and preliminary characterization of a new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. Mol Plant 1:977–989

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Hahn (CCRC, UGA) for the pBAt plasmid and Adam Bogdanove (ISU) for genomic DNA of X. oryzae. We are grateful to Andre Salazar (BBMB, ISU) for his valuable technical assistance. This work was supported by the grant #09-3384 obtained from Roy J. Carver Charitable Trust (2009–2011) and we acknowledge their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Zabotina.

Additional information

Gennady Pogorelko, Oksana Fursova and Ming Lin contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 646 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorelko, G., Fursova, O., Lin, M. et al. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. Plant Mol Biol 77, 433 (2011). https://doi.org/10.1007/s11103-011-9822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-011-9822-9

Keywords

Navigation