Skip to main content
Log in

Chitosan nanoparticles as a modified diclofenac drug release system

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% (w/v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50–100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% (w/v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% (w/v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport.

Diclofenac-nanoparticle interaction and diclofenac release from nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  Google Scholar 

  • Ahn JS, Choi HK, Cho CS (2001) A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials 22(9):923–928

    Article  Google Scholar 

  • Akashi M, Ajiro H (2015) Template polymerization (molecular templating). Encycl Polym Nanomater 2498–2502

  • Azhgozhinova GS, Güven O, Pekel N, Dubolazov AV, Mun GA, Nurkeeva ZS (2004) Complex formation of linear poly (methacrylic acid) with uranyl ions in aqueous solutions. J Colloid Interface Sci 278(1):155–159

    Article  Google Scholar 

  • Balcerzak J, Mucha M (2010) Analysis of model drug release kinetics from complex matrices of polylactide-chitosan. Progress Chem Appl Chitin Deriv 15:117–125

    Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajor-caju into ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72(1):63–76

    Article  Google Scholar 

  • Berthold A, Cremer K, Kreuter JSTP (1996) Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release 39(1):17–25

    Article  Google Scholar 

  • Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech 7(2):E138–E143

    Article  Google Scholar 

  • Bratskaya SY, Pestov AV, Yatluk YG, Avramenko VA (2009) Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloids Surf A Physicochem Eng Asp 339(1):140–144

    Article  Google Scholar 

  • Cavalheiro ETG, Ionashiro M, Breviglieri ST, Marino G, Chierice GO (1995) A influência de fatores experimentais nos resultados de análises termogravimétricas. Quím Nova 18(3):305–308

    Google Scholar 

  • Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523(1):1–24

    Article  Google Scholar 

  • Corrigan OI (1995) Thermal analysis of spray dried products. Thermochim Acta 248:245–258

    Article  Google Scholar 

  • Crank J (1979) The mathematics of diffusion. Oxford university press

  • De Moura MR, Aouada FA, Mattoso LH (2008) Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci 321(2):477–483

    Article  Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275(1):171–187

    Article  Google Scholar 

  • Dos Santos JE, da PSoares J, Dockal ER, Filho SPC, Cavalheiro ÉT (2003) Caracterização de quitosanas comerciais de diferentes origens. Polimeros Cienc Tecnol 13(4):242–249

    Article  Google Scholar 

  • Du J, Dai J, Liu JL, Dankovich T (2006) Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React Funct Polym 66(10):1055–1061

    Article  Google Scholar 

  • Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63(1):20–31

    Google Scholar 

  • Elsabee MZ (2015) Chitosan-based edible films. In Polysaccharides. Springer, pp 829–870

  • Fang Y, Liu S, Hu D, Cui Y, Xue M (1999) Complexes of chitosan and poly (methacrylic acid) studied by fluorescence techniques. Polym Bull 43(4–5):387–394

    Article  Google Scholar 

  • Florence AT, Attwood D (2003) Princıpios fısico quımicos em farmácia

  • Friederich B, Laachachi A, Ferriol M, Ruch D, Cochez M, Toniazzo V (2010) Tentative links between thermal diffusivity and fire-retardant properties in poly (methyl methacrylate)–metal oxide nanocomposites. Polym Degrad Stab 95(7):1183–1193

    Article  Google Scholar 

  • Gong M, Li ZF, Wang Q, Sheng KL, Wang XQ, Gong YK (2014) Fabrication of cell outer membrane mimetic surfaces on chitosan nanoparticles by polyionic complex and template polymerization. In applied mechanics and materials (Vol. 618, pp. 335-338). Trans Tech Publ

  • Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X (2011) Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine 6(4):683–692

    Google Scholar 

  • Hecq J, Siepmann F, Siepmann J, Amighi K, Goole J (2015) Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration. Drug Dev Ind Pharm 41(12):2037–2044

    Article  Google Scholar 

  • Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, ..., Hirvonen J (2007) Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 331(1):133–138

  • Hellen KS, Monika PT, Silva MA, Laranjeira MC, de Qualidade LDC (2007) Desenvolvimento, Avaliação e Caracterização Físico Química de Micropartículas Constituídas de Aciclovir/Quitosana Desenvolvidas pela Técnica de Spray-drying. Lat Am J Pharm 26(6):866–871

    Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Preparation and characterization of chitosan nanoparticles-loaded fish gelatin-based edible films. J Food Process Eng

  • Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials 23(15):3193–3201

    Article  Google Scholar 

  • Hu Y, Chen Y, Chen Q, Zhang L, Jiang X, Yang C (2005) Synthesis and stimuli-responsive properties of chitosan/poly (acrylic acid) hollow nanospheres. Polymer 46(26):12703–12710

    Article  Google Scholar 

  • Huang H, Hu N, Zeng Y, Zhou G (2002) Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem 308(1):141–151

    Article  Google Scholar 

  • Issa MM, Köping-Höggård M, Artursson P (2005) Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov Today Technol 2(1):1–6

    Article  Google Scholar 

  • Khandai M, Chakraborty S, Sharma A, Pattnaik S, Patra CN, Dinda SC, Sem KK (2010) Preparation and evaluation of algino-sericin mucoadhesive microspheres: an approach for sustained drug delivery. J Adv Pharm Res 1:48–60

    Google Scholar 

  • Koyano T, Koshizaki N, Umehara H, Nagura M, Minoura N (2000) Surface states of PVA/chitosan blended hydrogels. Polymer 41(12):4461–4465

    Article  Google Scholar 

  • Kozhunova E, Ji Q, Hill JP, Ariga K (2015) Hollow capsules fabricated by template polymerization of N-Vinylcaprolactam. J Nanosci Nanotechnol 15(3):2389–2393

    Article  Google Scholar 

  • Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  Google Scholar 

  • Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: effect of crosslinking agent. J Microencapsul 19(2):173–180

    Article  Google Scholar 

  • Laranjeira MCM, Fávere VD (2009) Quitosana: biopolímero funcional com potencial industrial biomédico. Quím Nova 32(3):672–678

    Article  Google Scholar 

  • Leroueil-Le Verger M, Fluckiger L, Kim YI, Hoffman M, Maincent P (1998) Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm 46(2):137–143

    Article  Google Scholar 

  • Liaw H Jr, Hsueh TY, Tan TS, Wang Y, Chiao SM (2007) Twin-screw compounding of poly (methyl methacrylate)/clay nanocomposites: effects of compounding temperature and matrix molecular weight. Polym Int 56(8):1045–1052

    Article  Google Scholar 

  • Lima IS, Airoldi C (2004) A thermodynamic investigation on chitosan–divalent cation interactions. Thermochim Acta 421(1):133–139

    Article  Google Scholar 

  • Luo Y, Teng Z, Li Y, Wang Q (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym 122:221–229

    Article  Google Scholar 

  • Manjanna KM, Shivakumar B, Pramod kumar T.M. (2009) Diclofenac sodium microbeads for oral sustained drug delivery. Int J PharmTech Res 1(2):317–327

    Google Scholar 

  • Melo NFSD, Grillo R, Fraceto LF, Dias Filho NL, Paula ED, Araújo DRD, Rosa AH (2010) Desenvolvimento e caracterização de nanocápsulas de poli (L-lactídeo) contendo benzocaína. Quím Nova 65–69

  • Moldoveanu SC (1998) Analytical pyrolysis of natural organic polymers (Vol. 20). Elsevier

  • Monteiro OA, Airoldi C (1999) Some thermodynamic data on copper–chitin and copper–chitosan biopolymer interactions. J Colloid Interface Sci 212(2):212–219

    Article  Google Scholar 

  • Neto CDT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103

    Article  Google Scholar 

  • Nieto JM, Peniche-Covas C, Padro G (1991) Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochim Acta 176:63–68

    Article  Google Scholar 

  • Paavola A, Yliruusi J, Kajimoto Y, Kalso E, Wahlström T, Rosenberg P (1995) Controlled release of lidocaine from injectable gels and efficacy in rat sciatic nerve block. Pharm Res 12(12):1997–2002

    Article  Google Scholar 

  • Patil S, Deshmukh V, Renukdas S, Pate N (2011) Kinetics of adsorption of crystal violet from aqueous solutions using different natural materials. Int J Environ Sci 1(6):1116–1134

    Google Scholar 

  • Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, ..., Batoni G (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6:372

  • Połowiński S (2002) Template polymerisation and co-polymerisation. Prog Polym Sci 27(3):537–577

    Article  Google Scholar 

  • Popat A, Liu J, Lu GQM, Qiao SZ (2012) A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem 22(22):11173–11178

    Article  Google Scholar 

  • Poth N, Seiffart V, Gross G, Menzel H, Dempwolf W (2015) Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomol Ther 5(1):3–19

    Google Scholar 

  • Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63(3):367–374

    Article  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5(1):37–42

    Article  Google Scholar 

  • Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer 41(19):7051–7056

    Article  Google Scholar 

  • Schaffazick SR, Guterres SS, Freitas LDL, Pohlmann AR (2003) Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quím Nova 26(5):726–737

    Article  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51

    Article  Google Scholar 

  • Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H (1996) Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int J Biol Macromol 18(3):237–242

    Article  Google Scholar 

  • Sinclair GW, Peppas NA (1984) Analysis of non-Fickian transport in polymers using simplified exponential expressions. J Membr Sci 17(3):329–331

    Article  Google Scholar 

  • Sonaje K, Italia JL, Sharma G, Bhardwaj V, Tikoo K, Kumar MR (2007) Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res 24(5):899–908

    Article  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  Google Scholar 

  • Sreenivasan K (1996) Thermal stability studies of some chitosanmetal ion complexes using differential scanning calorimetry. Polym Degrad Stab 52(1):85–87

    Article  Google Scholar 

  • Stoliarov SI, Lyon RE, Nyden MR (2004) A reactive molecular dynamics model of thermal decomposition in polymers. II. Polyisobutylene. Polymer 45(25):8613–8621

    Article  Google Scholar 

  • Teixeira M, Alonso MJ, Pinto MM, Barbosa CM (2005) Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm 59(3):491–500

    Article  Google Scholar 

  • Tirkistani FA (1998) Thermal analysis of some chitosan Schiff bases. Polym Degrad Stab 60(1):67–70

    Article  Google Scholar 

  • Venkatraman SS, Jie P, Min F, Freddy BYC, Leong-Huat G (2005) Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier. Int J Pharm 298(1):219–232

    Article  Google Scholar 

  • Wang Y, Zhang Y, Du W, Wu C, Zhao J (2009) Intelligent core-shell nanoparticles and hollow spheres based on gelatin and PAA via template polymerization. J Colloid Interface Sci 334(2):153–160

    Article  Google Scholar 

  • Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab 87(3):389–394

    Article  Google Scholar 

  • Wen X, Tang L, Qiang L (2014) Stimuli-responsive one-dimensional copolymer nanostructures fabricated by metallogel template polymerization and their adsorption of aspirin. Soft Matter 10(22):3960–3969

    Article  Google Scholar 

  • Yoncheva K, Vandervoort J, Ludwig A (2003) Influence of process parameters of high-pressure emulsification method on the properties of pilocarpine-loaded nanoparticles. J Microencapsul 20(4):449–458

    Article  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  Google Scholar 

  • Yu K, Ho J, McCandlish E, Buckley B, Patel R, Li Z, Shapley NC (2013) Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids Surf A Physicochem Eng Asp 425:31–41

    Article  Google Scholar 

  • Yuan Q, Shah J, Hein S, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6(3):1140–1148

    Article  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226

    Article  Google Scholar 

  • Zhang YW, Chen Y, Zhao JX (2014) Facile fabrication of antibacterial core–shell nanoparticles based on PHMG oligomers and PAA networks via template polymerization. Aust J Chem 67(1):142–150

    Article  Google Scholar 

  • Žilnik LF, Jazbinšek A, Hvala A, Vrečer F, Klamt A (2007) Solubility of sodium diclofenac in different solvents. Fluid Phase Equilib 261(1):140–145

    Google Scholar 

Download references

Acknowledgments

All the authors thank the National Council for Scientific and Technological Development (CNPq), Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and FAPESPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseane Maria Ribeiro Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Supereior (CAPES) and Fundação Amazônia de Amparo a Estudos e Pesquisa Pará (FAPESPA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte Junior, A.P., Tavares, E.J.M., Alves, T.V.G. et al. Chitosan nanoparticles as a modified diclofenac drug release system. J Nanopart Res 19, 274 (2017). https://doi.org/10.1007/s11051-017-3968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3968-6

Keywords

Navigation