Skip to main content
Log in

On a Hamilton-Poisson Approach of the Maxwell-Bloch Equations with a Control

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we consider the 3D real-valued Maxwell-Bloch equations with a parametric control given by \(\dot {x}=y+az+byz,\dot {y}=xz,\dot {z}=-xy\) (\(a,b\in \mathbb {R}\)). We give two Lie-Poisson structures of this system that are related with well-known Lie algebras. Moreover, we construct infinitely many Hamilton-Poisson realizations of this system. We also analyze the stability of the equilibrium points, as well as the existence of periodic orbits. In addition, we emphasize some connections between the energy-Casimir mapping of the considered system and the above-mentioned dynamical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev, K.N., Berman, G.P.: Dynamic chaos in the interaction between external monochromatic radiation and a two-level medium, with allowance for cooperative effects. Sov. Phys. JETP 65, 1115–1120 (1987)

    Google Scholar 

  2. Holm, D.D., Kovacic, G.: Homoclinic chaos in a laser matter system. Physica D 56, 270–300 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. David, D., Holm, D.D.: Multiple Lie-Poisson Structures, Reductions, and Geometric Phases for the Maxwell-Bloch Travelling Wave Equations. J. Nonlinear Sci. 2, 241–262 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Puta, M.: Integrability and geometric prequantization of the Maxwell-Bloch equations. Bull. Sci. Math. 122, 243–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, D.: Bi-Hamiltonian structure and homoclinic orbits of the Maxwell–Bloch equations with RWA. Chaos, Solitons and Fractals 22, 207–212 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Lăzureanu, C., Bînzar, T., Pater, F.: On Periodic Solutions and Energy - Casimir Mapping for Maxwell-Bloch Equations (2010) 1245-1247. In: Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium, ISBN 978-3-901509-73-5, ISSN 1726-9679, pp 0623, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria (2010)

    Google Scholar 

  7. Birtea, P., Caşu, I.: The stability problem and special solutions for the 5-components Maxwell—Bloch equations. Appl. Math. Lett. 26(8), 875–880 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caşu, I.: Symmetries of the Maxwell-Bloch equations with the rotating wave approximation. Regular and Chaotic Dynamics 19(5), 548–555 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Caşu, I., Lăzureanu, C.: Stability and integrability aspects for the Maxwell-Bloch equations with the rotating wave approximation. Regular and Chaotic Dynamics 22(2), 109–121 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Puta, M., Butur, M., Goldenthal, G.H., Mos, I., Rujescu, C.: Maxwell-Bloch equations with a quadratic control about O x 1 axis. In: Second Int. Conf. on Geometry, Integrability and Quantization, June 7-15. Varna, pp 280–286 (2000)

    Google Scholar 

  11. Tudoran, R.M., Aron, A., Nicoară, Ş.: On a Hamiltonian Version of the Rikitake System. SIAM J. Appl. Dyn. Syst. 8(1), 454–479 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lie, S.: Theorie des transformationsgruppen, Leipzig, Teubner. Zweiter Abschnitt, unter Mitwirkung van Prof. Dr. F. Engel (1890)

  13. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom.s 18, 523–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marsden, J., Raţiu, T.S.: Introduction to Mechanics and Symmetry. In: Text and Appl. Math. 17. 2nd Edn. Springer, Berlin (1999)

  15. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. D. Reidel, Dordrecht (1987)

    Book  MATH  Google Scholar 

  16. Puta, M.: Hamiltonian mechanical system and geometric quantization. Kluwer Academic Publishers, Dordrecht (1993)

    Book  MATH  Google Scholar 

  17. Lăzureanu, C., Bînzar, T.: A Rikitake type system with quadratic control. Int. J. Bifurcation and Chaos 22(11), 1250274 (2012). (14 pages)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lăzureanu, C., Bînzar, T.: Some geometrical properties of the Maxwell-Bloch equations with a linear control. In: Proc. of the XIII-th Int. Conf. Math. App., Timişoara, pp 151–158 (2012)

    Google Scholar 

  19. Bînzar, T., Lăzureanu, C.: A Rikitake type system with one control. Discrete and Continuous Dynamical Systems-B 18(7), 1755–1776 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lăzureanu, C., Bînzar, T.: Symmetries and properties of the energy-Casimir mapping in the ball-plate problem. Advances in Mathematical Physics, Vol. 2017, Article ID 5164602 (13 pages)

  21. Tudoran, R.M., Gîrban, A.: On a Hamiltonian version of a three-dimensional Lotka-Volterra system. Nonlinear Anal. Real World Appl. 13, 2304–2312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bînzar, T., Lăzureanu, C.: On some dynamical and geometrical properties of the Maxwell-Bloch equations with a quadratic control. J. Geometry and Physics 70, 1–8 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Adams, R. M., Biggs, R., Remsing, C. C.: Single-input control systems on the Euclidean group S E(2). Eur. J. Pure Appl. Math. 5(1), 1–15 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Barrett, D. I., Biggs, R., Remsing, C. C.: Optimal Control of Drift-Free Invariant Control Systems on the Group of Motions of the Minkowski Plane Proceedings of the 13th European Control Conference, Strasbourg, France, 2014, 2466–2471. European Control Association (2014)

    Google Scholar 

  25. Bolsinov, A. V., Borisov, A. V.: Compatible Poisson Brackets on Lie Algebras. Math. Notes 72(1), 10–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Arnold, V.: Conditions for nonlinear stability of stationary plane curvilinear flows on an ideal fluid. Akad. Nauk. Doklady SSSR 162, 773–777 (1965)

    Google Scholar 

  27. Lyapunov, A.M.: Problème générale de la stabilité du mouvement, vol. 17. Princeton University Press, NJ (1949)

    Google Scholar 

  28. Marsden, J., Raţiu, T. S.: Manifolds, tensor analysis and applications, 3rd Edn. Springer, New York (2002)

    MATH  Google Scholar 

  29. Birtea, P., Puta, M., Tudoran, R.M.: Periodic orbits in the case of zero eigenvalue. C.R. Acad. Sci. Paris, Ser. I(344), 779–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees very much for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Lăzureanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lăzureanu, C. On a Hamilton-Poisson Approach of the Maxwell-Bloch Equations with a Control. Math Phys Anal Geom 20, 20 (2017). https://doi.org/10.1007/s11040-017-9251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-017-9251-3

Keywords

Mathematics Subject Classification (2010)

Navigation