Skip to main content
Log in

Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density \(j_\mathrm{c}\) and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature 414, 368 (2001)

    Article  ADS  Google Scholar 

  2. S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6, 631 (2007)

    Article  ADS  Google Scholar 

  3. B. Maiorov, S.A. Baily, H. Zhou, O. Ugurlu, J.A. Kennison, P.C. Dowden, T.G. Holesinger, S.R. Foltyn, L. Civale, Nat. Mater. 8, 398 (2009)

    Article  ADS  Google Scholar 

  4. T. Horide, T. Kawamura, K. Matsumoto, A. Ichinose, M. Yoshizumi, T. Izumi, Y. Shiohara, Supercond. Sci. Technol. 26, 075019 (2013)

    Article  ADS  Google Scholar 

  5. A.V. Silhanek, L. Civale, M.A. Avila, Phys. Rev. B 65, 174525 (2002)

    Article  ADS  Google Scholar 

  6. A.O. Ijaduola, S.H. Wee, A. Goyal, P.M. Martin, J. Li, J.R. Thompson, D.K. Christen, Supercond. Sci. Technol. 25, 045013 (2012)

    Article  ADS  Google Scholar 

  7. A.A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988)

    Google Scholar 

  8. G.M. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  9. E.H. Brandt, Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  10. L. Civale, Supercond. Sci. Technol. 10, A11 (1997)

    Article  ADS  Google Scholar 

  11. V.M. Pan, A.L. Kasatkin, V.L. Svetchnikov, H.W. Zandbergen, Cryogenics 33, 21 (1993)

    Article  ADS  Google Scholar 

  12. B. Dam, J.M. Huijbregtse, F.C. Klaassen, R.C.F. van der Geest, G. Doornbos, J.H. Rector, A.M. Testa, S. Freisem, J.C. Martinezk, B. Stauble-Pumpin, R. Griessen, Nature 399, 439 (1999)

    Article  ADS  Google Scholar 

  13. V. Pan, Y. Cherpak, V. Komashko, S. Pozigun, C. Tretiatchenko, A. Semenov, E. Pashitskii, A.V. Pan, Phys. Rev. B 73, 054508 (2006)

    Article  ADS  Google Scholar 

  14. L. Fang, Y. Jia, C. Chaparro, G. Sheet, H. Claus, M.A. Kirk, A.E. Koshelev, U. Welp, G.W. Crabtree, W.K. Kwok, S. Zhu, H.F. Hu, J.M. Zuo, H.-H. Wen, B. Shen, Appl. Phys. Lett. 101, 012601 (2012)

    Article  ADS  Google Scholar 

  15. T. Taen, H. Yagyuda, Y. Nakajima, T. Tamegai, O. Ayala-Valenzuela, L. Civale, B. Maiorov, T. Kambara, Y. Kanai, Phys. Rev. B 89, 024508 (2014)

    Article  ADS  Google Scholar 

  16. F. Ohtake, T. Taen, S. Pyon, T. Tamegai, S. Okayasu, Phys. Proced. 58, 122 (2014)

    Article  ADS  Google Scholar 

  17. E.H. Brandt, Phys. Rev. Lett. 69, 1105 (1992)

    Article  ADS  Google Scholar 

  18. A. Gurevich, Supercond. Sci. Technol. 20, S128 (2007)

    Article  ADS  Google Scholar 

  19. D.R. Nelson, V.M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992)

    Article  ADS  Google Scholar 

  20. D.R. Nelson, V.M. Vinokur, Phys. Rev. B 48, 13060 (1993)

    Article  ADS  Google Scholar 

  21. A.L. Kasatkin, V.M. Pan, H.C. Freyhardt, I.E.E.E. Trans, Appl. Supercond. 7, 1588 (1997)

    Article  ADS  Google Scholar 

  22. V. Tsvetkovskii, A. Kasatkin, V. Shabatura, J. Phys. Conf. Ser. 43, 639 (2006)

    Article  ADS  Google Scholar 

  23. E.H. Brandt, Phys. Rev. B 48, 6699 (1993)

    Article  ADS  Google Scholar 

  24. E.H. Brandt, Phys. Rev. Lett. 67, 2219 (1991)

    Article  ADS  Google Scholar 

  25. M.W. Coffey, J.R. Clem, IEEE Trans. Magn. 27, 2136 (1991)

    Article  ADS  Google Scholar 

  26. M.W. Coffey, J.R. Clem, Phys. Rev. Lett. 67, 386 (1991)

    Article  ADS  Google Scholar 

  27. M.W. Coffey, J.R. Clem, Phys. Rev B 45(9872), 10527 (1992)

    Article  ADS  Google Scholar 

  28. R. Willa, V.B. Geshkenbein, G. Blatter, Phys. Rev. B 93, 064515 (2016)

    Article  ADS  Google Scholar 

  29. G.S. Mkrtchyan, V.V. Shmidt, J. Exp. Theor. Phys. 34, 195 (1972)

    ADS  Google Scholar 

  30. H. Nordborg, V.M. Vinokur, Phys. Rev. B 62, 12408 (2000)

    Article  ADS  Google Scholar 

  31. A. Buzdin, M. Daumens, Phys. A 332, 108 (2000)

    ADS  Google Scholar 

  32. E.A. Pashitskii, V.I. Vakaryuk, Russ. Low Temp. Phys. 28, 16 (2002)

    ADS  Google Scholar 

  33. A.A. Bespalov, A.S. Mel’nikov, Supercond. Sci. Technol. 26, 085014 (2013)

    Article  ADS  Google Scholar 

  34. A.V. Lopatin, V.M. Vinokur, Phys. Rev. Lett. 92, 067008 (2004)

    Article  ADS  Google Scholar 

  35. V.A. Fedirko, S.V. Polyakov, A.L. Kasatkin, Math. Models Comput. Simul. 6, 408 (2014)

    Article  MathSciNet  Google Scholar 

  36. E.H. Brandt, M. Indenbom, Phys. B 194–196, 1803 (1994)

    Article  Google Scholar 

  37. Y. Kafri, D.R. Nelson, A. Polkovnikov, Europhys. Lett. 73, 253 (2006)

    Article  ADS  Google Scholar 

  38. E.B. Sonin, B. Horovitz, Phys. Rev. B 51, 6526 (1995)

    Article  ADS  Google Scholar 

  39. E.M. Chudnovsky, A. Ferrera, A. Vilenkin, Phys. Rev. B 51, 1181 (1995)

    Article  ADS  Google Scholar 

  40. L. Radzihovsky, Phys. Rev. Lett. 74, 4919 (1995)

    Article  ADS  Google Scholar 

  41. C. Morais Smith, A.O. Caldeira, G. Blatter, Phys. C 276, 42 (1997)

    Article  ADS  Google Scholar 

  42. A.F.Th. Hoekstra, A.M. Testa, G. Doornbos, J.C. Martinez, B. Dam, R. Griessen, B.I. Ivlev, M. Brinkmann, K. Westerholt, W.K. Kwok, G.W. Crabtree, Phys. Rev. B 59, 7222 (1999)

  43. Z. Sefrioui, D. Arias, F. Morales, M. Varela, C. Leon, R. Escudero, J. Santamaria, Phys. Rev. B 63, 054509 (2001)

    Article  ADS  Google Scholar 

  44. M.V. Indenbom, C.J. van der Beek, M. Konczykowski, F. Holtzberg, Phys. Rev. Lett. 84, 1792 (2000)

    Article  ADS  Google Scholar 

  45. A.W. Smith, H.M. Jaeger, T.F. Rosenbaum, A.M. Petrean, W.K. Kwok, G.W. Crabtree, Phys. Rev. Lett. 84, 4974 (2000)

    Article  ADS  Google Scholar 

  46. E.H. Brandt, M. Indenbom, Phys. Rev. B 48, 12893 (1993)

    Article  ADS  Google Scholar 

  47. E. Zeldov, J.R. Clem, M. McElfresh, M. Darwin, Phys. Rev. B 49, 9802 (1994)

    Article  ADS  Google Scholar 

  48. A.I. Kosse, YuE Kuzovlev, G.G. Levchenko, YuV Medvedev, AYu. Prokhorov, V.A. Khokhlov, P.N. Mikheenko, JETP Lett. 78, 379 (2003)

    Article  ADS  Google Scholar 

  49. S.R. Foltyn, H. Wang, L. Civale, Q.X. Jia, P.N. Arendt, B. Maiorov, Y. Li, M.P. Maley, Appl. Phys. Lett. 87, 162505 (2005)

    Article  ADS  Google Scholar 

  50. T. Matsushita, M. Kiuchi, K. Kimura, S. Miyata, A. Ibi, T. Muroga, Y. Yamada, Y. Shiohara, Supercond. Sci. Technol. 18, S227 (2005)

    Article  ADS  Google Scholar 

  51. S.I. Kim, F. Kametani, Z. Chen, A. Gurevich, D.C. Larbalestier, Appl. Phys. Lett. 90, 252502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research (Projects No. 17-01-00973-a and No. 15-07-06082-a). The authors thank A. Drugov for some computing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedirko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedirko, V.A., Kasatkin, A.L. & Polyakov, S.V. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor. J Low Temp Phys 192, 359–374 (2018). https://doi.org/10.1007/s10909-018-1986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1986-0

Keywords

Navigation