Skip to main content
Log in

Red Emitting Monoazo Disperse Dyes with Phenyl(1H-benzoimidazol-5-yl) Methanone as Inbuilt Photostabilizing Unit: Synthesis, Spectroscopic, Dyeing and DFT Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Synthesis of three novel phenyl(1H-benzoimidazol-5-yl)methanone based fluorescent monoazo disperse dyes and their characterization by spectroscopic methods (1H NMR, 13C NMR, IR and MS) are presented. Insertion of phenyl(1H-benzoimidazol-5-yl)methanone moiety bring about induced fluorescence properties and enhanced photostability as compared to the previously reported analogues (CI Solvent Yellow 14, 4-diethylamino-2-hydroxy-1-diazobenzene and 7-(diethylamino)-4-hydroxy-3-(phenyldiazenyl)-2H-chromen-2-one). Synthesized phenyl(1H-benzoimidazol-5-yl)methanone based dyes exhibited red-shifted absorption maxima (497–516 nm), high molar extinction coefficients and are emitting in the far-red region (565–627 nm). Moreover, naphthalene-comprising dyes showed negative solvatochromism while N,N-diethylamine comprising dyes showed positive solvatochromism and are in good agreement with solvent polarity graphs and the computed energy levels of highest occupied and lowest unoccupied molecular orbitals. Synthesised dyes have better photostability (light fastness) and sublimation fastness on dyed polyester and nylon compared to reported analogues. DFT calculated energies, electrophilicity index and Frontier Molecular Orbitals (FMO’s) enabled to evaluate the stabilities of azo and hydrazone forms of the dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhide R, Jadhav AG, Sekar N (2016) Light fast monoazo dyes with an inbuilt photostabilizing unit: Synthesis and computational studies. Fibers Polym 17:349–357. https://doi.org/10.1007/s12221-016-5717-3

    Article  CAS  Google Scholar 

  2. Sharma RK, Gulati S, Pandey A, Adholeya A (2012) Novel, efficient and recyclable silica based organic–inorganic hybrid Nickel catalyst for degradation of dye pollutants in a newly designed chemical reactor. Appl Catal B Environ 125:247–258. https://doi.org/10.1016/j.apcatb.2012.05.046

    Article  CAS  Google Scholar 

  3. Sekar N (2014) Natural colorants versus synthetic colorants. Colourage 61:54–56

    Google Scholar 

  4. Bafana A, Devi SSCT (2011) Azo dyes: past, present and the future. Environ Rev 19:350–370

    Article  CAS  Google Scholar 

  5. Seesuriyachan P, Takenaka S, Kuntiya A et al (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Res 41:985–992. https://doi.org/10.1016/j.watres.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  6. Al-Sheikh M, Medrasi HY, Usef Sadek K, Mekheimer RA (2014) Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules 19:2993–3003. https://doi.org/10.3390/molecules19032993

    Article  PubMed  CAS  Google Scholar 

  7. Abdou MM (2013) Thiophene-Based Azo Dyes and Their Applications in Dyes. Chemistry 3:126–135. https://doi.org/10.5923/j.chemistry.20130305.02.

    Article  CAS  Google Scholar 

  8. Athalye A (2015) Automotive Textiles. Int J Text Eng Process 1:42–52

    Google Scholar 

  9. Ravve A (2006) Photosensitizers and Photoinitiators. In: Light React Synth Polym. Springer New York, New York, pp 23–122

    Chapter  Google Scholar 

  10. Jiang X, Rui Y, Chen G (2009) Improved Properties of Cotton by Atmospheric Pressure Plasma Polymerization Deposition of Sericin. J Vinyl Addit Technol 21:129–133. https://doi.org/10.1002/vnl

    Article  Google Scholar 

  11. Patel HM (2014) Synthesis, Structure Investigation and Dyeing Assessment of Novel Bisazo Disperse Dyes Derived from UV Absorbing Material. IOSR. J Appl Chem 6:51–55

    Google Scholar 

  12. Bochet CG (2014) 9.13 Organic Photochemistry. In: Compr Org Synth II. Elsevier, pp 330–350

  13. Jadhav AG, Shinde SS, Lanke SK, Sekar N (2017) Benzophenone based fluorophore for selective detection of Sn2+ ion: Experimental and theoretical study. Spectrochim Acta Part A Mol Biomol Spectrosc 174:291–296. https://doi.org/10.1016/j.saa.2016.11.051

    Article  CAS  Google Scholar 

  14. Dorman G, Prestwich GD (1994) Benzophenone Photophores in Biochemistry. Biochemistry 33:5661–5673. https://doi.org/10.1021/bi00185a001

    Article  PubMed  CAS  Google Scholar 

  15. Sen GA, Paul K, Luxami V (2015) Ratiometric fluorescent chemosensor for fluoride ion based on inhibition of excited state intramolecular proton transfer. Spectrochim Acta, Part A Mol Biomol Spectrosc 138:67–72. https://doi.org/10.1016/j.saa.2014.11.026

    Article  CAS  Google Scholar 

  16. Sen GA, Paul K, Luxami V (2016) Benzimidazole based ratiometric chemosensor for detection of CN− and Cu2+ ions in protic/aqueous system: Elaboration as XOR logic operation. Inorganica Chim Acta 443:57–63. https://doi.org/10.1016/j.ica.2015.11.024

    Article  CAS  Google Scholar 

  17. Kiguchi M, Evans PD (1998) Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Polym Degrad Stab 61:33–45. https://doi.org/10.1016/S0141-3910(97)00124-9

    Article  CAS  Google Scholar 

  18. Chou P-T, Chen Y-C, Yu W-S et al (2001) Excited-State Intramolecular Proton Transfer in 10-Hydroxybenzo[h]quinoline. J Phys Chem A 105:1731–1740. https://doi.org/10.1021/jp002942w

    Article  CAS  Google Scholar 

  19. Mitchell D, Lukeman M, Lehnherr D, Wan P (2005) Formal Intramolecular Photoredox Chemistry of Meta-Substituted Benzophenones. Org Lett 7:3387–3389. https://doi.org/10.1021/ol051381u

    Article  PubMed  CAS  Google Scholar 

  20. Beckett A, Porter G (1963) Primary photochemical processes in aromatic molecules. Part 10.-Photochemistry of substituted benzophenones. Trans Faraday Soc 59:2051. https://doi.org/10.1039/tf9635902051

    Article  CAS  Google Scholar 

  21. Dixit B, Patel H, Dixit R, Desai D (2010) Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2- hydroxy-4-methoxybenzophenone on wool and silk fabrics. J Serbian Chem Soc 75:605–614. https://doi.org/10.2298/JSC090704039D

    Article  CAS  Google Scholar 

  22. Tsatsaroni EG, Eleftheriadis IC (2004) UV-absorbers in the dyeing of polyester with disperse dyes. Dyes Pigments 61:141–147. https://doi.org/10.1016/j.dyepig.2003.10.002

    Article  CAS  Google Scholar 

  23. Barsotti F, Brigante M, Sarakha M et al (2015) Photochemical processes induced by the irradiation of 4-hydroxybenzophenone in different solvents. Photochem Photobiol Sci 14:2087–2096. https://doi.org/10.1039/c5pp00214a

    Article  PubMed  CAS  Google Scholar 

  24. Bhasikuttan a C, Singh a K, Palit DK et al (1998) Laser Flash Photolysis Studies on the Monohydroxy Derivatives of Benzophenone. Laser Flash Photolysis Studies on the Monohydroxy Derivatives of Benzophenone J Phys Chem 102:3470–3480. https://doi.org/10.1021/jp972375l

    Article  Google Scholar 

  25. Das PK, Encinas MV, Scaiano JC (1981) Laser flash photolysis study of the reactions of carbonyl triplets with phenols and photochemistry of p-hydroxypropiophenone. J Am Chem Soc 103:4154–4162. https://doi.org/10.1021/ja00404a029

    Article  CAS  Google Scholar 

  26. Palit DK (2005) Photophysics and excited state relaxation dynamics of p-hydroxy and p-amino-substituted benzophenones: a review. Res Chem Intermed 31:205–225. https://doi.org/10.1163/1568567053147020

    Article  CAS  Google Scholar 

  27. Barsotti F, Ghigo G, Berto S, Vione D (2017) The nature of the light absorption and emission transitions of 4-hydroxybenzophenone in different solvents. A combined computational and experimental study. Photochem Photobiol Sci. https://doi.org/10.1039/C6PP00272B

  28. Kumar D, Justin Thomas KR, Lee C, Ho K (2014) Organic Dyes Containing Fluorene Decorated with Imidazole Units for Dye-Sensitized Solar Cells. J Org Chem 79:3159–3172. https://doi.org/10.1021/jo500330r

    Article  PubMed  CAS  Google Scholar 

  29. Aulakh RK, Sandhu S, Tanvi, et al (2015) Designing and synthesis of imidazole based hole transporting material for solid state dye sensitized solar cells. Synth Met 205:92–97. doi: https://doi.org/10.1016/j.synthmet.2015.03.030

  30. Skonieczny K, Ciuciu AI, Nichols EM et al (2012) Bright, emission tunable fluorescent dyes based on imidazole and π-expanded imidazole. J Mater Chem. https://doi.org/10.1039/c2jm33891b

  31. Zhang X, Chen Y (2013) Synthesis and fluorescence of dicyanoisophorone derivatives. Dyes Pigments 99:531–536. https://doi.org/10.1016/j.dyepig.2013.05.031

    Article  CAS  Google Scholar 

  32. Li W, Lin W, Wang J, Guan X (2013) Phenanthro[9,10- d ]imidazole-quinoline Boron Difluoride Dyes with Solid-State Red Fluorescence. Org Lett 15:1768–1771. https://doi.org/10.1021/ol400605x

    Article  PubMed  CAS  Google Scholar 

  33. Prostota Y, Kachkovsky OD, Reis LV, Santos PF (2013) New unsymmetrical squaraine dyes derived from imidazo[1,5-a]pyridine. Dyes Pigments 96:554–562. https://doi.org/10.1016/j.dyepig.2012.10.006

    Article  CAS  Google Scholar 

  34. Fouassier J, Allonas X, Burget D (2003) Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog Org Coatings 47:16–36. https://doi.org/10.1016/S0300-9440(03)00011-0

    Article  CAS  Google Scholar 

  35. Wan Z, Zhou L, Jia C et al (2014) Comparative study on photovoltaic properties of imidazole-based dyes containing varying electron acceptors in dye-sensitized solar cells. Synth Met 196:193–198. https://doi.org/10.1016/j.synthmet.2014.08.005

    Article  CAS  Google Scholar 

  36. Tsai M, Hsu Y-C, Lin JT et al (2007) Organic Dyes Containing 1 H -Phenanthro[9,10- d ]imidazole Conjugation for Solar Cells. J Phys Chem C 111:18785–18793. https://doi.org/10.1021/jp075653h

    Article  CAS  Google Scholar 

  37. Shank NI, Zanotti KJ, Lanni F et al (2009) Enhanced Photostability of Genetically Encodable Fluoromodules Based on Fluorogenic Cyanine Dyes and a Promiscuous Protein Partner. J Am Chem Soc 131:12960–12969. https://doi.org/10.1021/ja9016864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bamfield P, Britain) RS of C (Great (2001) Chapter 3. Phenomena Involving Absorption of Energy Followed by Emission of Light. In: Chromic Phenom. Royal Society of Chemistry, Cambridge, pp 234–365

  39. Szuster L, Kaźmierska M, Król I (2004) Fluorescent dyes destined for dyeing high-visibility polyester textile products. Fibres Text East Eur 12:70–75

    CAS  Google Scholar 

  40. Youssef BM, Ahmed MHM, Arief MMH, Mashaly HM (2014) Synthesis and Application of Functional (Anti-UV) Azo-dyes based on γ -acid on Wool Fabrics. Indian J Sci Technol 7:1005–1013

    Google Scholar 

  41. Kano N, Yamamura M, Kawashima T (2015) 2,2′-Disilylazobenzenes Featuring Double Intramolecular Nitrogen⋯Silicon Coordination: A Photoisomerizable Fluorophore. Dalt Trans 44:16256–16265. https://doi.org/10.1039/C5DT02038G

    Article  CAS  Google Scholar 

  42. Satam MA, Raut RK, Sekar N (2013) Fluorescent azo disperse dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigments 96:92–103. https://doi.org/10.1016/j.dyepig.2012.07.019

    Article  CAS  Google Scholar 

  43. Yoshino J, Kano N, Kawashima T (2013) Fluorescent azobenzenes and aromatic aldimines featuring an N–B interaction. Dalt Trans 42:15826. https://doi.org/10.1039/c3dt51689j

    Article  CAS  Google Scholar 

  44. Deshmukh MS, Sekar N (2015) Chemiluminescence properties of isoluminol related mono azo disperse dyes: Experimental and DFT based approach to photophysical properties. Dyes Pigments 115:127–134. https://doi.org/10.1016/j.dyepig.2014.12.019

    Article  CAS  Google Scholar 

  45. Tathe AB, Sekar N (2016) Red Emitting Coumarin—Azo Dyes : Synthesis, Characterization, Linear and Non-linear Optical Properties-Experimental and Computational Approach. J Fluoresc 26:1279–1293. https://doi.org/10.1007/s10895-016-1815-2

    Article  PubMed  CAS  Google Scholar 

  46. Warde U, Sekar N (2017) NLOphoric mono-azo dyes with negative solvatochromism and in-built ESIPT unit from ethyl 1,3-dihydroxy-2-naphthoate: Estimation of excited state dipole moment and pH study. Dyes Pigments 137:384–394. https://doi.org/10.1016/j.dyepig.2016.10.032

    Article  CAS  Google Scholar 

  47. Jadhav AG, Sekar N (2017) Substituent Modulation from ESIPT to ICT Emission in Benzoimidazolphenyl-methanones Derivatives: Synthesis, Photophysical and DFT Study. J Solut Chem 46:777–797. https://doi.org/10.1007/s10953-017-0602-2

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis B01, Gaussian, Inc, Wallingford CT

  49. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  50. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  51. Shaikh KA, Patil VA, Shaikh PA (2012) An Efficient and Convenient Synthesis of Imidazolines and Benzimidazoles via Oxidation of Carbon-Nitrogen Bond in Water Media. Chinese J Chem 30:924–928. https://doi.org/10.1002/cjoc.201100210

    Article  CAS  Google Scholar 

  52. Devi TC, Krishnan R, Kunju AS (2004) Synthesis and Characterization of Copper(II), Cobalt(II) and Manganese(II) Complexes of 2-(2′-hydroxynaphthylazo)-5-benzoulbenzimidazole. Asian J Chem 16:1611–1617

    CAS  Google Scholar 

  53. Munro CH, Smith WE, Armstrong DR, White PC (1995) Assignments and Mechanism of SERRS of the Hydrazone Form for the Azo Dye Solvent Yellow 14. J Phys Chem 99:879–885. https://doi.org/10.1021/j100003a008

    Article  CAS  Google Scholar 

  54. Olson DH, Camblor MA, Villaescusa LA, Kuehl GH (2004) Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous Mesoporous Mater 67:27–33. https://doi.org/10.1016/j.micromeso.2003.09.025

    Article  CAS  Google Scholar 

  55. Maximilian Paul Schmidt W-B, and Hermann Neuroth, Wiesbaden G (1934) LIGHT-SENSITIVE LAYER. 3–4.

  56. Chen X-C, Tao T, Wang Y-G et al (2012) Azo-hydrazone tautomerism observed from UV-vis spectra by pH control and metal-ion complexation for two heterocyclic disperse yellow dyes. Dalt Trans 41:11107. https://doi.org/10.1039/c2dt31102j

    Article  CAS  Google Scholar 

  57. Peters AT (1995) Freeman HS. Modern Colorants, Synthesis and Structure. https://doi.org/10.1007/978-94-011-1356-4

    Book  Google Scholar 

  58. Lanke SK, Sekar N (2016) Aggregation induced emissive carbazole-based push pull NLOphores: Synthesis, photophysical properties and DFT studies. Dyes Pigments 124:82–92. https://doi.org/10.1016/j.dyepig.2015.09.013

    Article  CAS  Google Scholar 

  59. Leu WCW, Fritz AE, Digianantonio KM, Hartley CS (2012) Push-pull macrocycles: Donor-acceptor compounds with paired linearly conjugated or cross-conjugated pathways. J Org Chem 77:2285–2298. https://doi.org/10.1021/jo2026004

    Article  PubMed  CAS  Google Scholar 

  60. Tathe AB, Sekar N (2016) Red-emitting NLOphoric carbazole-coumarin hybrids - Synthesis, photophysical properties and DFT studies. Dyes Pigments 129:174–185. https://doi.org/10.1016/j.dyepig.2016.02.026

    Article  CAS  Google Scholar 

  61. Mashaly HM, Abdelghaffar RA, Kamel MM, Youssef BM (2014) Dyeing of Polyester Fabric using Nano Disperse Dyes and Improving their Light Fastness using ZnO Nano Powder. Indian J Sci Technol 7:960–967

    Google Scholar 

  62. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  63. Gupta VD, Tathe AB, Padalkar VS et al (2013) Red emitting solid state fluorescent triphenylamine dyes: Synthesis, photo-physical property and DFT study. Dyes Pigments 97:429–439. https://doi.org/10.1016/j.dyepig.2012.12.024

    Article  CAS  Google Scholar 

  64. Hamdaoui M, Lanouar A, Halaoua S (2015) Study of Fluorescent Dyeing Process and Influence of Mixture Dyes on High-visibility. J Eng Fiber Fabr 10:89–96

    CAS  Google Scholar 

Download references

Acknowledgements

One of the author Amol G. Jadhav is thankful to UGC for financial assistance in terms of SRF.

Suvidha Shinde is thankful to the Centre of Advanced Studies (UGC) for JRF and SRF under the Special Assistance Programme (SAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

ESM 1

(DOCX 1442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, A.G., Shinde, S.S. & Sekar, N. Red Emitting Monoazo Disperse Dyes with Phenyl(1H-benzoimidazol-5-yl) Methanone as Inbuilt Photostabilizing Unit: Synthesis, Spectroscopic, Dyeing and DFT Studies. J Fluoresc 28, 639–653 (2018). https://doi.org/10.1007/s10895-018-2226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2226-3

Keywords

Navigation