Skip to main content

Advertisement

Log in

Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe F, Yamauchi T, Nagao T, Kinjo J, Okabe H, Higo H, Akahane H (2002) Ursolic acid as a trypanocidal constituent in rosemary. Biol Pharm Bull 25(11):1485–1487

    Article  CAS  Google Scholar 

  • Araujo DSD (1992) Vegetation types of sandy coastal plains of tropical Brazil: a first approximation, 1st ed. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic Press, San Diego, pp 337–347

    Chapter  Google Scholar 

  • Araujo DSD (2000) Análise florística e fitogeográfica das restingas do Estado do Rio de Janeiro. Tese de Doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Araujo DSD, Henriques RPB (1984) Análise florística das restingas do Estado do Rio de Janeiro, 1st ed. In: Lacerda LD, Araujo DSD, Cerqueira R, Turcq B (eds) Restingas: origem, estrutura, processos. CEUFF, Niteroi, pp 159–193

    Google Scholar 

  • Arioka S, Sakagami M, Uematsu R, Yamaguchi H, Togame H, Takemoto H, Hinou H, Nishimura S (2010) Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Bioorg Med Chem 18:1633–1640

    Article  CAS  Google Scholar 

  • Baldim JL, Alcântara BGV, Domingos OS, Soares MG, Caldas IS, Novaes RD, Oliveira TB, Lago JHG, Chagas-Paula DA (2017) The correlation between chemical structures and antioxidant, prooxidant, and antitrypanosomatid properties of flavonoids. Oxid Med Cell Longev 2017:1–12

    Article  Google Scholar 

  • Bermudez J, Davies C, Simonazzi A, Real JP, Palma S (2016) Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 156:1–16

    Article  CAS  Google Scholar 

  • Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585(2-3):325–337

    Article  CAS  Google Scholar 

  • Chan-Bacab MJ, Peña-Rodríguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18:674–688

    Article  CAS  Google Scholar 

  • Cunha-Neto E, Chevillard C (2014) Chagas disease cardiomyopathy: immunopathology and genetics. Mediat Inflamm 2014:1–11

    Article  Google Scholar 

  • Desrivot J, Waikedre J, Cabalion P (2007) Antiparasitic activity of some New Caledonian medicinal plants. J Ethnopharmacol 112:7–12

    Article  Google Scholar 

  • Fernandes CP, Correa AL, Cruz RAS, Botas GS, Silva-Filho MV, Santos MG, Brito MA, Rocha L (2014) Anticholinesterasic activity of Manilkara subsericea (Mart.) Dubard triterpenes. Lat Am J Pharm 30:1631–1634

    Google Scholar 

  • Ferrari BC, Cheung-Kwok-Sang C, Beggs PJ, Stephens N, Power ML, Waldron LS (2011) Molecular epidemiology and spatial distribution of a waterborne cryptosporidiosis outbreak in Australia. Appl Environ Microbiol 77:7766–7771

    Article  Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31(6):435–445

    Article  CAS  Google Scholar 

  • García M, Monzote L, Montalvo AM, Scull R (2010) Screening of medicinal plants against Leishmania amazonensis. Pham Boil 48:1053–1058

    Google Scholar 

  • Guegan F, Plazolles N, Baltz T, Coustou V (2013) Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Cell Microbiol 15:1285–1303

    Article  CAS  Google Scholar 

  • Guo Z (2017) The modification of natural products for medical use. Acta Pharm Sin B 7:119–136

    Article  Google Scholar 

  • Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81(1, supplement):268S–276S

    CAS  Google Scholar 

  • Haza AI, Coto AL, Morales P (2011) Comparison of the ability of myricetin and quercetin to modulate the oxidative DNA damage induced by heterocyclic amines. Food Nutr Sci 2:356–365

    Article  CAS  Google Scholar 

  • Hong C, Dang Y, Lin G, Yao Y, Li G, Ji G, Shen H, Xie Y (2014) Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Int J Pharm 477:251–260

    Article  CAS  Google Scholar 

  • Ikeda Y, Murakami A, Fujimura Y, Tachibana H, Yamada K, Masuda D, Hirano K, Yamashita S, Ohigashi H (2007) Aggregated ursolic acid, a natural triterpenoid, induces IL-1beta release from murine peritoneal macrophages: role of CD36. J Immunol 178(8):4854–4864

    Article  CAS  Google Scholar 

  • Kondrashin AV, Baranova AM, Morozova LF, Stepanova EV (2011a) Global trends in malaria control. Progress and topical tasks in malaria control programs. Med Parazitol (Mosk) 4:3–8

    Google Scholar 

  • Kondrashin AV, Baranova AM, Morozova LF, Stepanova EV (2011b) Urgent tasks of malaria elimination programs. Med Parazitol (Mosk) 3:3–9

    Google Scholar 

  • Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV, Silva SO (2016) Dibenzylidene acetones are potent trypanocidal compounds that affect the trypanosoma cruzi redox system. Antimicrob Agents Chemother 60:890–903

    Article  Google Scholar 

  • Lee YK, Hwang JT, Kwon DY, Surh YJ, Park OJ (2010) Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett 292:228–236. https://doi.org/10.1016/j.canlet.2009.12.005

    Article  CAS  Google Scholar 

  • Leite JPV, Oliveira AB, Lombardi JA, Filho JDS, Chiari E (2006) Trypanocidal activity of triterpenes from arrabidaea triplinervia and derivatives. Biol Pharm Bull 29(11):2307–2309

    Article  CAS  Google Scholar 

  • Meira CS, Guimarães ET, Dos Santos JA, Moreira DR, Nogueira RC, Tomassini TC, Ribeiro IM, de Souza CV, Dos Santos RR, Soares MB (2015) In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine 22:969–974

    Article  Google Scholar 

  • Monti D, Salvioli S, Capri M, Malorni W, Straface E, Cossarizza A, Botti B, Piacentini M, Baggio G, Barbi C, Valensin S, Bonafe M, Franceschi C (2000) Decreased susceptibility to oxidative stress-induced apoptosis of peripheral blood mononuclear cells from healthy elderly and centenarians. Mech Ageing Dev 121:239–250

    Article  CAS  Google Scholar 

  • Muelas-Serrano S, Nogal JJ, Martínez-Díaz RA, Escario JA, Martínez-Fernández AR, Gómez-Barrio A (2000) In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. J Ethnopharmacol 71:101–107

    Article  CAS  Google Scholar 

  • Mulholland PJ, Ferry DR, Anderson D, Hussain SA, Young AM, Cook JE, Hodgkin E, Seymour LW, Kerr DJ (2001) Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann Oncol 12:245–248. https://doi.org/10.1023/A:1008372017097

    Article  CAS  Google Scholar 

  • Nwaka S, Ridley RG (2003) Virtual drug discovery and development for neglected diseases through public private partnerships. Nat Rev Drug Discov 2:919–928

    Article  CAS  Google Scholar 

  • Pawlikowska-Pawlęgaa B, Gruszeckib WI, Misiakb L, Paduchc R, Piersiaka T, Zarzykad B, Paweleca J, Gawrona A (2007) Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. Biochim Biophys Acta Biomembr 1768(9):2195–2204

    Article  Google Scholar 

  • Pereira RM, Greco GMZ, Moreira AM, Chagas PF, Caldas IS, Gonçalves RV, Novaes RD (2017) Applicability of plant-based products in the treatment of Trypanosoma cruzi and Trypanosoma brucei infections: a systematic review of preclinical in vivo evidence. Parasitology 5:1–13

    Article  Google Scholar 

  • Phillipson JD, Wright CW (1991) Antiprotozoal agents from plant sources. Planta Med 57:53–59

    Article  Google Scholar 

  • Rassi A Jr, Rassi A, Marcondes-de-Rezende J (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin N Am 26:275–291

    Article  Google Scholar 

  • Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomed 12:514–535

    Article  CAS  Google Scholar 

  • Schmidlin T, Hürlimann E, Silué KD, Yapi RB, Houngbedji C, Kouadio BA, Acka-Douabélé CA, Kouassi D, Ouattara M, Zouzou F, Bonfoh B, N’Goran EK, Utzinger J, Raso G (2013) Effects of hygiene and defecation behavior on helminths and intestinal protozoa infections in Taabo, Coˆte d’Ivoire. PLoS One 8:e65722

    Article  CAS  Google Scholar 

  • Tasdemir D, Kaiser M, Burn R, Yardley V, Schmidt TJ, Tosun F, Rued P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship and quantitative structure-activity relationship studies. Antimicrob Agents Chemother. 50:1352–1364

    Article  CAS  Google Scholar 

  • Tengku SA, Norhayati M (2011) Public health and clinical importance of amoebiasis in Malaysia: a review. Trop Biomed 28:194–222

    CAS  Google Scholar 

  • Vargas de Oliveira EC, Carneiro ZA, de Albuquerque S, Marchetti JM (2017) Development and evaluation of a nanoemulsion containing ursolic acid: a promising trypanocidal agent: nanoemulsion with ursolic acid against T. cruzi. AAPS Pharm Sci Tech. https://doi.org/10.1208/s12249-017-0736-y

  • Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, Ueda-Nakamura T, Dias Filho BP (2010) In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurenciadendroidea. Parasitology 137:1661–1670

    Article  CAS  Google Scholar 

  • Wegner DH, Rohwedder RW (1972) The effect of nifurtimox in acute Chagas’ infection. Arzneimittelforschung 22:1624–1635

    CAS  Google Scholar 

  • WHO- World Health Organization (2011) Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases, no. 1. WHO, Geneva

    Google Scholar 

  • WHO- World Health Organization (2012) Chagas disease (American trypanosomiasis). WHO, Fact Sheet 340:1–4

  • Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance andnew targets. Expert Rev Mol Med 29:11–31

    Google Scholar 

  • Wube AA, Bucar F, Gibbons S, Asres K, Rattray L, Croft SL (2010) Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma bruceirhodesiense and Plasmodium falciparum in vitro. Phytother Res 24:1468–1472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are greatful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Auxílio à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Programa Institucional de Indução a Ciência, Tecnologia e Inovação em Saúde (PAPES VI) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Robson Xavier Faria and André Luis Souza designed the research; Leandro Machado Rocha e Robson Xavier Faria provided the space and the reagents; Robson Xavier Faria and André Luis Souza performed the experiments; Barbara Lima, Luis Armando CandidoTietbohl, Caio Pinho Fernandes, Raquel Rodrigues Amaral, Bettina Monika Ruppelt, Marcelo Guerra Santos collected the plants and prepared the extracts, Leandro Machado Rocha and Robson Xavier Faria wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Robson Xavier Faria.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, R.X., Souza, A.L.A., Lima, B. et al. Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains. J Bioenerg Biomembr 49, 473–483 (2017). https://doi.org/10.1007/s10863-017-9733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9733-9

Keywords

Navigation