Skip to main content
Log in

Performance enhancement of quantum dot sensitized solar cells by treatment of ZnO nanorods by magnesium acetate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the performance of Quantum dot-sensitized solar cells (QDSSCs) is enhanced with the treatment of ZnO nanorods by magnesium acetate. A chemical solution method is used for decoration of magnesium acetate on the ZnO nanorods. Current density–voltage (J-V) results show short-circuit current density (J sc ), open circuit voltage (V oc ), and power conversion efficiency (PCE) are enhanced by treatment of the photoanode with magnesium acetate from 13.76 to 15.47 mAcm−2, 557 to 668 mV, and 2.64 to 5.47%, respectively. This performance improvement of the cell is attributed to the reduction of the surface density of defects at ZnO surface and consequently decreasing recombination of the photoelectrons with surface defects at ZnO surface with the treatment of ZnO nanorods by magnesium acetate. Electrochemical impedance spectroscopy (EIS) results indicate recombination resistance is increased with decoration magnesium acetate on the ZnO nanorods, which is caused fill factor (FF) raises from 0.35 to 0.53. Also, electron lifetime at the photoanode/electrolyte interface is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Nozik, Quantum dot solar cells. Phys. E: Low-Dimension. Syst. Nanostruct. 14 (2002) 115–120

    Article  Google Scholar 

  2. S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)

    Article  Google Scholar 

  3. P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013)

    Article  Google Scholar 

  4. P.V. Kamat, J.A. Christians, J.G. Radich, Quantum dot solar cells: hole transfer as a limiting factor in boosting the photo conversion efficiency. Langmuir 30 (2014) 5716–5725

    Article  Google Scholar 

  5. H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 22, 148–167 (2013)

    Article  Google Scholar 

  6. F. Deng, X. Mei, X. Wan, R. Fan, Q. Wu, X. Yan, L. Wan, D. Shi, Y. Xiong, Efficiency improvement of quantum dot sensitized solar cells with inserting ZnS layer in the photo anode. J. Mater. Sci: Mater. Electron. 1–4 (2015)

  7. Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)

    Article  Google Scholar 

  8. Z. Pan, I.n.. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, High-efficiency “green” quantum dot solar cells. J. Am. Chem. Soc. 136, 9203–9210 (2014)

    Article  Google Scholar 

  9. G. Sixto, M.-S. Iván, M. Lorena, G. Nestor, L.-V. Teresa, G. Roberto, J.D. Lina, S. Qing, T. Taro, B. Juan, Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)

    Article  Google Scholar 

  10. K. Tvrdy, Electron Transfer Reactions in Quantum Dot Sensitized Solar Cells, University of Notre Dame, 2011

  11. M. Eskandari, V. Ahmadi, Treatment effects of ZnO and Al:ZnO photoanodes on short-circuit photocurrent and open-circuit photo voltage of quantum dot sensitized solar cell using Ag nanoparticles. Electrochim. Acta 165, 239–246 (2015)

    Article  Google Scholar 

  12. M. Eskandari, R. Ghahary, M. Shokri, V. Ahmadi, Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells. RSC Adv. 6, 51894–51899 (2016)

    Article  Google Scholar 

  13. A.B.F. Vitoreti, L.B. Corrêa, E. Raphael, A.O.T. Patrocinio, A.F. Nogueira, M.A. Schiavon, Quantum dot-sensitized solar cells. Quim. Nova. 40(2017) 436–446

    Google Scholar 

  14. M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustain. Energy Fuels (2017)

  15. I.A. Rauf, P. Rezai, A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: a simplified approach to reviewing literature data. Renew. Sustain. Energy Rev. 73, 408–422 (2017)

    Article  Google Scholar 

  16. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)

    Article  Google Scholar 

  17. M.A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovoltaics Res. Appl. 17, 183–189 (2009)

    Article  Google Scholar 

  18. D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy (2016)

  19. J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, J. Ouyang, Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 4, 887–893 (2016)

    Article  Google Scholar 

  20. H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, A. Yamada, New world-record efficiency for pure-sulfide Cu (In, Ga) S thin-film solar cell with Cd-Free buffer layer via KCN-free process. IEEE J. Photovoltaics (2016)

  21. P. Parand, M. Samadpour, A. Esfandiar, A. Iraji Zad, Graphene/PbS as a novel counter electrode for quantum dot sensitized solar cells. Acs Photonics 1, 323–330 (2014)

    Article  Google Scholar 

  22. N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246–252 (2013)

    Article  Google Scholar 

  23. M. Eskandari, V. Ahmadi, R. Ghahary, Copper sulfide/lead sulfide as a highly catalytic counter electrode for zinc oxide nanorod based quantum dot solar cells. Electrochim. Acta 151, 393–398 (2015)

    Article  Google Scholar 

  24. M. Eskandari, V. Ahmadi, Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells. Mater. Lett 142, 308–311 (2015)

    Article  Google Scholar 

  25. H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V. Gopi, K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochim. Acta 127, 427–432 (2014)

    Article  Google Scholar 

  26. L. Quan, W. Li, L. Zhu, H. Geng, X. Chang, H. Liu, A new in-situ preparation method to FeS counter electrode for quantum dots-sensitized solar cells. J. Power Sour. 272, 546–553 (2014)

    Article  Google Scholar 

  27. M. Liu, G. Li, X. Chen, One-pot controlled synthesis of spongelike CuInS2 microspheres for efficient counter electrode with graphene assistance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 2604–2610 (2014)

    Article  Google Scholar 

  28. J. Yang, C. Bao, J. Zhang, T. Yu, H. Huang, Y. Wei, H. Gao, G. Fu, J. Liu, Z. Zou, In situ grown vertically oriented CuInS 2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells. Chem. Commun. 49, 2028–2030 (2013)

    Article  Google Scholar 

  29. K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, Effect of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells. J. Phys. Chem. C 117, 5584–5592 (2013)

    Article  Google Scholar 

  30. T.P. Brennan, O. Trejo, K.E. Roelofs, J. Xu, F.B. Prinz, S.F. Bent, Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. J. Mater. Chem. A 1, 7566–7571 (2013)

    Article  Google Scholar 

  31. M. Javad Fahimi, D. Fathi, M. Ansari-Rad, Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells. Physica E: Low-dimensional Syst. Nanostruct. 73, 148–155 (2015)

  32. M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. J. Fund. Appl. Sci. 8(3), 54–70 (2016)

    Google Scholar 

  33. Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)

    Article  Google Scholar 

  34. Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chem. Mater. 27, 8398–8405 (2015)

    Article  Google Scholar 

  35. Z. Ren, Z. Wang, R. Wang, Z. Pan, X. Gong, X. Zhong, Effects of metal oxy hydroxide coatings on photo anode in quantum dot sensitized solar cells. Chem. Mater. (2016)

  36. M. Eskandari, V. Ahmadi, S. Ahmadi, Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature. Phys. E: Low-Dimension. Syst. Nanostruct. 42, 1683–1686 (2010)

    Article  Google Scholar 

  37. M. Eskandari, V. Ahmadi, R. Ghahary, Enhanced photovoltaic performance of a cadmium sulfide/cadmium selenide-sensitized solar cell using an aluminum-doped zinc oxide electrode. Ceram. Int. 41, 2373–2380 (2015)

    Article  Google Scholar 

  38. D. Hassouna, C. Hedia, T. Fathi, Mg(OH)2 nanorods synthesized by A facile hydrothermal method in the presence of CTAB. Nano-Micro Lett. 3, 153–159 (2011)

    Article  Google Scholar 

  39. K. Guo, M. Li, X. Fang, X. Liu, B. Sebo, Y. Zhu, Z. Hu, X. Zhao, Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode. J. Power Sour. 230, 155–160 (2013)

    Article  Google Scholar 

  40. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Giménez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278–17290 (2009)

    Article  Google Scholar 

  41. M. Eskandari, V. Ahmadi, S. Kohnehpoushi, Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nano particles as photo anode. Phys. E: Low-Dimension. Syst. Nanostruct. 68, 202–209 (2015)

    Article  Google Scholar 

  42. C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control. Nanoscale 7, 12552–12563 (2015)

    Article  Google Scholar 

  43. J. Zhao, P. Wang, L. Wei, Z. Liu, J. Zhang, H. Si, Y. Mai, X. Fang, X. Liu, D. Ren, Enhanced photocurrent by the co-sensitization of ZnO with dye and CuInSe nanocrystals. Dalton Trans. 44, 12516–12521 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimi, M.J., Eskandari, M. & Fathi, D. Performance enhancement of quantum dot sensitized solar cells by treatment of ZnO nanorods by magnesium acetate. J Mater Sci: Mater Electron 29, 4569–4574 (2018). https://doi.org/10.1007/s10854-017-8407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8407-z

Navigation