Skip to main content
Log in

Molecular dynamics study of laccase immobilized on self-assembled monolayer-modified Au

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of laccase immobilized by 4-aminothiophenol (4-ATP) were performed to understand the origin of the enhanced catalytic activity at 350 K of laccase immobilized by self-assembled monolayers. The simulation showed that laccase was stabilized by bonding with 4-ATP. In addition, docking simulation of 2,6-dimethoxyphenol (DMP) to laccase revealed that the hydrophobic interaction energy was increased by bonding with 4-ATP. The variations of docking site size were minor considering the dimensions of DMP molecule. Therefore, it is suggested that the enhanced catalytic activity of laccase with 4-ATP is attributed to the high hydrophobic interaction energy between laccase and DMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hakamada M, Takahashi M, Furukawa T, Tajima K, Yoshimura K, Chino Y, Mabuchi M (2011) Electrochemical stability of self-assembled monolayers on nanoporous Au. Phys Chem Chem Phys 13:12277–12284

    Article  Google Scholar 

  2. Shulga OV, Jefferson K, Khan AR, D’Souza VT, Liu J, Demchenko AV, Stine KJ (2007) Preparation and characterization of porous gold and its application as a platform for immobilization of acetylcholine esterase. Chem Mater 19:3902–3911

    Article  Google Scholar 

  3. Qin H, Xu C, Huang X, Ding Y, Qu Y, Gao P (2009) Immobilization of laccase on nanoporous gold: comparative studies on the immobilization strategies and the particle size effect. J Phys Chem C 113:2521–2525

    Article  Google Scholar 

  4. Tielens F, Santos E (2010) AuS and SH bond formation/breaking during the formation of alkanethiol SAMs on Au (111): a theoretical study. J Phys Chem C 114:9444–9452

    Article  Google Scholar 

  5. Hakamada M, Takahashi M, Mabuchi M (2012) Enhanced thermal stability of laccase immobilized on monolayer-modified nanoporous Au. Mater Lett 66:4–6

    Article  Google Scholar 

  6. Yaropolov A, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    Article  Google Scholar 

  7. Gupta G, Rajendran V, Atanassov P (2003) Laccase biosensor on monolayer-modified gold electrode. Electroanalysis 20:1577–1583

    Article  Google Scholar 

  8. Mena ML, Carralero V, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Laccase biosensor based on N-succinimidyl-3-thiopropionate-functionalized gold electrodes. Electroanalysis 23:2147–2155

    Article  Google Scholar 

  9. Deng L, Wang F, Chen H, Shang L, Wang L, Wang T, Shaojun D (2008) A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode. Biosens Bioelectron 24:329–333

    Article  Google Scholar 

  10. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425

    Article  Google Scholar 

  11. MacJerell AD Jr, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  12. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Lacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  Google Scholar 

  13. Berman HM, Westbrook J, Feng Z, Gilliland G et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  14. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  15. Dominguez CV, Pita M, De Lacey AL, Shleev S, Cuesta A (2012) Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified Au electrodes. J Phys Chem C 116:16532–16540

    Article  Google Scholar 

  16. Gupta G, Rajendran V, Atanassov P (2004) Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes. Electroanalysis 16:1182–1185

    Article  Google Scholar 

  17. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Oison AJ (2009) AutoDock4 and AutodockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:1639–1662

    Article  Google Scholar 

  18. Martinez-Sotres C, Rutiaga-Quinones JG, Herrera-Bucio R, Gallo G, Lopez-Albarran P (2015) Molecular docking insights into the inhibition of laccase activity by medicarpin. Wood Sci Technol 49:857–868

    Article  Google Scholar 

  19. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate—DNA helices. J Am Chem Soc 120:9401–9409

    Article  Google Scholar 

  20. Trevino SR, Schaefer S, Scholtz JM, Pace CN (2007) Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 373:211–218

    Article  Google Scholar 

  21. Fu H, Grimsley GR, Razvi A, Scholtz JM, Pace CN (2009) Increasing protein stability by improving beta-turns. Proteins 77:491–498

    Article  Google Scholar 

  22. Wang F, Guo C, Liu H-Z, Liu C-Z (2008) Immobilization of Pycnoporous sanguineus laccase by metal affinity adsorption on magnetic chelator particles. J Chem Technol Biotech 83:97–104

    Article  Google Scholar 

  23. Bayramoglu G, Yilmaz M, Arica MY (2010) Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes. Bioprocess Biosyst Eng 33:439–448

    Article  Google Scholar 

  24. Fernandes RA, Daniel-da-Silva AL, Tavares APM, Xavier AMRB (2017) EDTA-Cu(II) chelating magnetic nanoparticles as a support for laccase immobilization. Chem Eng Sci 158:599–605

    Article  Google Scholar 

  25. Autore F, Del Vecchio C, Fraternali F, Giardina P, Sannia G, Faraco V (2009) Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: analysis by site-directed mutagenesis. Enzyme Microb Technol 45:507–513

    Article  Google Scholar 

  26. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  Google Scholar 

  27. Tokuriki N, Stricher F, Serrano L, Tawfik DS (2008) How protein stability and new functions trade off. PLoS Comput Biol 4:e1000002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Miyazawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, N., Tanaka, M., Hakamada, M. et al. Molecular dynamics study of laccase immobilized on self-assembled monolayer-modified Au. J Mater Sci 52, 12848–12853 (2017). https://doi.org/10.1007/s10853-017-1392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1392-z

Keywords

Navigation