Skip to main content
Log in

TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Tea plant [Camellia sinensis (L.) O. Kuntze] is a perennial evergreen woody crop that is cultivated worldwide. Tea leaf is an important resource for producing natural non-alcoholic beverages. TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS) is a transcription factor family that controls the cell growth and proliferation of leaf tissues. In this study, 17 homologous TCP family transcription factors were identified and characterized in the leaf transcriptome of C. sinensis. The structural features, phylogenetic tree, and interaction networks of C. sinensis TCP (CsTCP) proteins were analyzed. Prediction of miRNA target sites suggests that miR319 may be involved in the post-transcriptional regulation of the CsTCP15 transcript. The expression profiles of all identified CsTCP genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA3, IAA, MeJA, and SA). Several CsTCP genes presented functional redundancies in leaf development and response to hormones. This study establishes an extensive overview of the TCP family genes and provides insights into the molecular mechanism of leaf development and hormonal stimuli in C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA3 :

Gibberellic acid

IAA:

3-indoleacetic acid

MeJA:

Methyl jasmonate

qRT-PCR:

Quantitative real-time PCR

SA:

Salicylic acid

SMS:

Sequence Manipulation Suite

TBP:

TATA-box binding protein

TCP:

TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS

References

  • Aguilar-Martínez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashihara H, Deng WW, Mullen W, Crozier A (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71(5–6):559–566

    Article  CAS  PubMed  Google Scholar 

  • Bordoni A, Hrelia S, Angeloni C, Giordano E, Guarnieri C, Caldarera CM, Biagi PL (2002) Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells. J Nutr Biochem 13(2):103–111

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC, Angenent GC, Immink RG (2012) Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol 159(4):1511–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG (2013) Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot 64(18):5673–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davière JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24(16):1923–1928

    Article  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488

    Article  CAS  PubMed  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20(9):2293–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucl Acids Res 41(D1):D808–D815

    Article  CAS  PubMed  Google Scholar 

  • Fu JY (2014) Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Bot Stud 55:1–6

    Article  Google Scholar 

  • Hervé C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Lacout F, Tremousaygue D (2009) In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149(3):1462–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang T, Irish VF (2015) Temporal control of plant organ growth by TCP transcription factors. Curr Biol 25(13):1765–1770

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X, Gao L, Xia T (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS ONE 8(4):e62315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J 68(1):147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9(9):1607–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337–348

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19(2):473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22(11):3574–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81(1):284s–291s

    CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucl Acids Res 43(D1):D257–D260

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zachgo S (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J 76(6):901–913

    Article  CAS  PubMed  Google Scholar 

  • Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36):12978–12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genom 16:560

    Article  Google Scholar 

  • Lopez JA, Sun Y, Blair PB, Mukhtar MS (2015) TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci 20(4):238–245

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383(6603):794–799

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wang Q, Sun R, Xie F, Jones DC, Zhang B (2014) Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Sci Rep 4:6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Liu F, Wang Q, Wang K, Jones DC, Zhang B (2016) Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci Rep 6:21535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manassero NG, Viola IL, Welchen E, Gonzalez DH (2013) TCP transcription factors architectures of plant form. Biomol Concepts 4(2):111–127

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucl Acids Res 43(D1):D222–D226

    Article  CAS  PubMed  Google Scholar 

  • Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15(1):31–39

    Article  PubMed  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106(52):22534–22539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263

    Article  CAS  PubMed  Google Scholar 

  • Paolo SD, Gaudio L, Aceto S (2015) Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep 5:16265

    Article  PubMed  PubMed Central  Google Scholar 

  • Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA (2014) Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol 14:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana NK, Mohanpuria P, Yadav SK (2008) Cloning and characterization of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze that is upregulated by ABA, SA, and H2O2. Mol Biotechnol 39(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi P, Guy KM, Wu W, Fang B, Yang J, Zhang M, Hu Z (2016) Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biol 16:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu ZJ, Li XH, Liu ZW, Xu ZS, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu ZJ, Tian C, Jiang Q, Li XH, Zhuang J (2016) Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 6:19748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZJ, Wang WL, Zhuang J (2017) Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families. Funct Integr Genom. doi:10.1007/s10142-017-0553-0

    Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: A genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Wang X, Lu G, Picinich SC (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Ma H, Wang J, Zhang D (2007) Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. J Integr Plant Biol 49(6):885–897

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (31570691).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZJ., Wang, WL. & Zhuang, J. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant [Camellia sinensis (L.) O. Kuntze]. Plant Growth Regul 83, 43–53 (2017). https://doi.org/10.1007/s10725-017-0282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0282-3

Keywords

Navigation