Skip to main content

Advertisement

Log in

Unusual N-type glycosylation of salivary prolactin-inducible protein (PIP): multiple LewisY epitopes generate highly-fucosylated glycan structures

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Prolactin-inducible protein (PIP) is a glycoprotein found in body secretions from exocrine glands like saliva and seminal plasma. Important biological functions of PIP concentrations have been demonstrated, e.g. in tumor diagnosis and progression. PIP quantity has been also found useful to determine the success of chemotherapy of mammary carcinoma. Here, we present the analysis of the N-glycosylation of PIP isolated from different sources by LC-MS(/MS) and 1H-NMR. We found a very uncommon N-type glycosylation of PIP in healthy individuals from both, seminal fluid and saliva. PIP carries unusual highly fucosylated N-linked glycans with multiple Lewisy (Ley) epitopes on bi-, tri- and tetraantennary structures resulting in up to nine fucosyl residues on a tetraantennary glycan. In most organs, Ley epitopes are not present on N-glycans except in case of a tumor when it is highly up-regulated and important for prognosis. Here, for the first time on a specific glycoprotein Ley antigens are unambiguously characterized on an N-type glycan by NMR spectroscopy. So far, for specific glycoproteins Ley epitopes had only been reported on O-glycans. Furthermore, a correlation between a nonsynonymous single nucleotide polymorphism (SNP) and glycosylation pattern was detected: individuals heterozygous for the SNP causing the amino acid exchange 51Gln to 51His have glycan structures with a higher degree of sialylation compared to individuals lacking the SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ASD:

Autism Spectrum Disorder

AIEX:

Anion exchange chromatography

CID:

Collision-induced dissociation

DC-SIGN:

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

DEAE FF:

Diethylaminoethyl cellulose fast flow

ESI:

Electrospray ionization

ExAC:

Exome aggregation consortium

Gal:

Galactose

GlcNAc:

N-acetylglucosamine

GCDFP-15:

Gross cystic disease fluid protein-15

gp17:

Glycoprotein 17

F:

Deoxyhexose

FA:

Formic acid

Fuc:

Fucose

H:

Hexose

HPLC:

High performance liquid chromatography

HR:

High resolution

Lea/b/x/y :

Lewis antigen a/b/x/y

MAF:

Minor allele frequency

MALDI:

Matrix assisted laser desorption/ionization

Man:

Mannose

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

N:

Hexosamine

NSCLC:

Non-small cell lung cancer

PGC:

Porous graphitic carbon

PIP:

Prolactin-inducible protein

PNGase F:

N-glycosidase F

PSA:

Prostate specific antigen

RP:

Reversed phase

S:

Sialic acid

SABP:

Secretory actin-binding protein

SEC:

Size exclusion chromatography

SNP:

Single nucleotide polymorphism

TOCSY:

Total correlated spectroscopy

Tris:

Tris(hydroxymethyl)aminomethane

UV:

Ultraviolet

References

  1. Schaller, J., Akiyama, K., Kimura, H., Hess, D., Affolter, M., Rickli, E.E.: Primary structure of a new actin-binding protein from human seminal plasma. Eur. J. Biochem. 196, 743–750 (1991)

    Article  PubMed  CAS  Google Scholar 

  2. Fleissig, Y., Reichenberg, E., Redlich, M., Zaks, B., Deutsch, O., Aframian, D.J., Palmon, A.: Comparative proteomic analysis of human oral fluids according to gender and age. Oral Dis. 16, 831–838 (2010)

    Article  PubMed  CAS  Google Scholar 

  3. Hassan, M.I., Waheed, A., Yadav, S., Singh, T.P., Ahmad, F.: Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell. Mol. Life Sci. 66, 447–459 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. Shiu, R.P.C., Iwasiow, B.M.: Prolactin-inducible proteins in human breast cancer cells. J. Biol. Chem. 260, 11307–11313 (1985)

    PubMed  CAS  Google Scholar 

  5. Naderi, A., Vanneste, M.: Prolactin-induced protein is required for cell cycle progression in breast cancer. Neoplasia. 16, 329–342 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Murphy, L.C., Tsuyuki, D., Myal, Y., Shiu, R.P.C.: Isolation and sequencing of cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D. J. Biol. Chem. 262, 15236–15241 (1987)

    PubMed  CAS  Google Scholar 

  7. Ngounou Wetie, A.G., Wormwood, K.L., Russell, S., Ryan, J.P., Darie, C.C., Woods, A.G.: A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autism Res. 8, 338–350 (2015)

    Article  PubMed  Google Scholar 

  8. Vranic, S., Schmitt, F., Sapino, A., Costa, J.L., Reddy, S., Castro, M., Gatalica, Z.: Apocrine carcinoma of the breast: a comprehensive review. Histol. Histopathol. 28, 1393–1409 (2013)

    PubMed  Google Scholar 

  9. Mazoujian, G., Pinkus, G.S., Davis, S., Haagensen, D.E.: Immunohistochemistry of a gross cystic disease fluid protein (GCDFP-15) of the breast - a marker of apocrine epithelium and breast carcinomas with apocrine features. Am. J. Pathol. 110(2), 105–112 (1983)

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Darb-Esfahani, S., von Minckwitz, G., Denkert, C., Ataseven, B., Högel, B., Mehta, K., Kaltenecker, G., Rüdiger, T., Pfitzner, B., Kittel, K., Fiedler, B., Baumann, K., Moll, R., Dietel, M., Eidtmann, H., Thomssen, C., Loibl, S.: Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer. 14(546), 1–10 (2014)

    Google Scholar 

  11. Honma, N., Takubo, K., Arai, T., Younes, M., Kasumi, F., Akiyama, F., Sakamoto, G.: Comparative study of monoclonal antibody B72.3 and gross cystic disease fluid protein-15 as markers of apocrine carcinoma of the breast. APMIS. 114, 712–719 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Adamczyk, B., Tharmalingam, T., Rudd, P.M.: Glycans as cancer biomarkers. Biochim. Biophys. Acta, Gen. Subj. 1820, 1347–1353 (2012)

    Article  CAS  Google Scholar 

  13. Nagel, T., Meyer, B.: Simultaneous characterization of sequence polymorphisms, glycosylation and phosphorylation of fibrinogen in a direct analysis by LC-MS. Biochim. Biophys. Acta. Proteins Proteomics. 1844, 2284–2289 (2014)

    Article  CAS  Google Scholar 

  14. Behnken, H.N., Ruthenbeck, A., Schulz, J.-M., Meyer, B.: Glycan analysis of prostate specific antigen (PSA) directly from the intact glycoprotein by HR-ESI/TOF-MS. J. Proteome Res. 13, 997–1001 (2014)

    Article  PubMed  CAS  Google Scholar 

  15. Vitorino, R., Lobo, M.J.C., Ferrer-Correira, A.J., Dubin, J.R., Tomer, K.B., Domingues, P.M., Amado, F.M.L.: Identification of human whole saliva protein components using proteomics. Proteomics. 4, 1109–1115 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Ramachandran, P., Boontheung, P., Xie, Y., Sondej, M., Wong, D.T., Loo, J.A.: Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res. 5, 1493–1503 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. Aarnoudse, C.A., Vallejo, J.J.G., Saeland, E., van Kooyk, Y.: Recognition of tumor glycans by antigen-presenting cells. Curr. Opin. Immunol. 18, 105–111 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2017)

    Article  CAS  Google Scholar 

  19. Mimura, Y., Church, S., Ghirlando, R., Ashton, P.R., Dong, S., Goodall, M., Lund, J., Jefferis, R.: The influence of glycosylation on the thermal stability and effector function expression of human IgG1-fc: properties of a series of truncated glycoforms. Mol. Immunol. 37, 697–706 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Caputo, E., Camarca, A., Moharram, R., Tornatore, P., Thatcher, B., Guardiola, J., Martin, B.M.: Structural study of GCDFP-15/gp17 in disease versus physiological conditions using a proteomic approach. Biochemistry. 42, 6169–6178 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. Larrain, M.I., Demichelis, S., Crespo, M., Lacunza, E., Barbera, A., Creton, A., Terrier, F., Segal-Eiras, A., Croce, M.V.: Breast cancer humoral immune response: involvement of Lewis y through the detection of circulating immune complexes and association with mucin 1 (MUC1). J. Exp. Clin. Cancer Res. 28, 121 (2009)

  22. Mortezai, N., Behnken, H.N., Kurze, A.K., Ludewig, P., Buck, F., Meyer, B., Wagener, C.: Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology. 23, 844–852 (2013)

    Article  PubMed  CAS  Google Scholar 

  23. Wu, L.-H., Hu, P., Wu, W., Wu, X.-Z.: Fucosylated glycans associated with development and metastasis of hepatocellular carcinoma cells. Prog. Biochem. Biophys. 36, 33–41 (2009)

  24. Madjd, Z., Parsons, T., Watson, N.F.S., Spendlove, I., Ellis, I., Durrant, L.G.: High expression of Lewisy/b antigens is associated with decreased survival in lymph node negative breast carcinomas. Breast Cancer Res. 7, 780–788 (2005)

    Article  CAS  Google Scholar 

  25. Kim, Y.S., Yuan, M., Itzkowitz, S.H., Sun, Q., Kaizu, T., Palekar, A., Trump, B.F., Hakomori, S.-I.: Expression of Ley and extended Ley blood group-related antigens in human malignant, premalignant, and nomalignant colonic tissues. Cancer Res. 46, 5985–5992 (1986)

    PubMed  CAS  Google Scholar 

  26. Miyake, M., Taki, T., Hitomi, S., Hakomori, S.-I.: Correlation of expression of H/Ley/Leb antigens with survival in patients with carcinoma of the lung. N. Engl. J. Med. 327, 14–18 (1992)

    Article  PubMed  CAS  Google Scholar 

  27. Kuemmel, A., Single, K., Bittinger, F., Faldum, A., Schmidt, L.H., Sebastian, M., Taube, C., Buhl, R., Wiewrodt, R.: The prognostic impact of blood group-related antigen Lewis Y and the ABH blood groups in resected non-small cell lung cancer. Tumor Biol. 28, 340–349 (2007)

    Article  CAS  Google Scholar 

  28. Liu, J.-J., Lin, B., Hao, Y.-Y., Li, F.-F., Liu, D.-W., Qi, Y., Zhu, L.C., Zhang, S.-L., Iwamori, M.: Lewis (y) antigen stimulates the growth of ovarian cancer cells via regulation of the epidermal growth factor receptor pathway. Oncol. Rep. 23, 833–841 (2010)

    Article  PubMed  CAS  Google Scholar 

  29. van Kooyk, Y., Rabinovich, G.A.: Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Kitamura, K., Stockert, E., Garin-Chesa, P., Welt, S., Lloyd, K.O., Armour, K.L., Wallace, T.P., Harris, W.J., Carr, F.J., Old, L.J.: Specificity analysis of blood group Lewis-y (Le (y)) antibodies generated against synthetic and natural Le (y) determinants. Immunology. 91, 12957–12961 (1994)

    CAS  Google Scholar 

  31. Saeland, E., Belo, A.I., Mongera, S., van Die, I., Meijer, G.A., van Kooyk, Y.: Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int. J. Cancer. 131, 117–128 (2012)

    Article  PubMed  CAS  Google Scholar 

  32. Schuster, M., Umana, P., Ferrara, C., Brünker, P., Gerdes, C., Waxenecker, G., Wiederkum, S., Schwager, C., Loibner, H., Himmler, G., Mudde, G.C.: Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 65, 7934–7941 (2005)

    Article  PubMed  CAS  Google Scholar 

  33. Klein, A., Carnoy, C., Lamblin, G., Roussel, P., van Kuik, J.A., de Waard, P., Vliegenthart, J.F.G.: Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. Eur. J. Biochem. 198, 151–168 (1991)

    Article  PubMed  CAS  Google Scholar 

  34. van Kuik, J.A., de Waard, P., Vliegenthart, J.F.G., Klein, A., Carnoy, C., Lamblin, G., Roussel, P.: Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. Eur. J. Biochem. 198, 169–182 (1991)

    Article  PubMed  Google Scholar 

  35. Klein, A., Carnoy, C., Lamblin, G., Roussel, P., van Kuik, J.A., Vliegenthart, J.F.G.: Isolation and structural charcterization of novel sialylated oligosaccharide-alditols from respiratoty-mucus glycoproteins of a patient suffering from bronchiectasis. Eur. J. Biochem. 211, 491–500 (1993)

    Article  PubMed  CAS  Google Scholar 

  36. Clark, G.F., Grassi, P., Pang, P.C., Panico, M., Lafrenz, D., Drobnis, E.Z., Baldwin, M.R., Morris, H.R., Haslam, S.M., Schedin-Weiss, S., Sun, W., Dell, A.: Tumor biomarker glycoproteins in the seminal plasma of healthy human males are endogenous ligands for DC-SIGN. Mol. Cell. Proteomics. 11, 1–12 (2012)

    Article  CAS  Google Scholar 

  37. van Gisbergen, K.P.J.M., Aarnoudse, C.A., Meijer, G.A., Geitjenbeek, T.B.H., van Kooyk, Y.: Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res. 65, 5935–5944 (2005)

    Article  PubMed  Google Scholar 

  38. Davidson, B., Risberg, B., Kristensen, G., Kvalheim, G., Emilsen, E., Bjamer, A., Berner, A.: Detection of cancer cells in effusions from patients diagnosed with gynaecological malignancies. Virchows Arch. 435, 43–49 (1999)

    Article  PubMed  CAS  Google Scholar 

  39. Yaziji, H., Battifora, H., Barry, T.S., Hwang, H.C., Bacchi, C.E., Mcintosh, M.W., Kussick, S.J., Gown, A.M.: Evaluation of 12 antibodies for distinguishing epithelioid mesothelioma from adenocarcinoma: identification of a three-antibody immunohistochemical panel with maximal sensitivity and specificity. Mod. Pathol. 19, 514–523 (2006)

    Article  PubMed  CAS  Google Scholar 

  40. Bajorath, J.: Three-dimensional model of the BR96 monoclonal antibody variable fragment. Bioconjug. Chem. 5, 213–219 (1994)

    Article  PubMed  CAS  Google Scholar 

  41. Sheriff, S., Chang, C.-Y.Y., Jeffrey, P.D., Bajorath, J.: X-ray structure of the uncomplexed anti-tumor antibody BR96 and comparison with its antigen-binding form. J. Mol. Biol. 259, 938–946 (1996)

    Article  PubMed  CAS  Google Scholar 

  42. Everest-Dass, A.V., Jin, D., Thaysen-Andersen, M., Nevalainen, H., Kolarich, D., Packer, N.H.: Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology. 22(11), 1465–1479 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. Van Kuik, J.A., Vliegenthart, J.F.G.: A 1H-NMR database computer program for the analysis of the primary structure of complex carbohydrates. Carbohydr. Res. 235, 53–68 (1992)

    Article  PubMed  Google Scholar 

  44. Issa, S., Moran, A.P., Ustinov, S.N., Lin, J.H.-H., Ligtenberg, A.J., Karlsson, N.G.: O-linked oligosaccharides from salivary agglutinin: helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology. 20(8), 1046–1057 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. Wuhrer, M., Koeleman, C.A., Hokke, C.H., Deelder, A.M.: Rapid Commun Mass Spectrom. 20(11), 1747–1754 (2006)

  46. Spohr, U., Lemieux, R.U.: Synthetic, conformational, and immunochemical studies of modified Lewis b and y human blood-group determinants to serve as probes for the combining site of the lectin IV of Griffonia simplicifolia. Carbohydr. Res. 174, 211–237 (1988)

    Article  PubMed  CAS  Google Scholar 

  47. Song, E., Hu, Y., Hussein, A., Yu, C.-Y., Tang, H., Mechref, Y.: Characterization of the glycosylation site of human PSA prompted by missense mutation using LC-MS/MS. J. Proteome Res. 14, 2872–2883 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hassan, M.I., Bilgrami, S., Kumar, V., Singh, N., Yadav, S., Kaur, P., Singh, T.P.: Crystal structure of the novel complex formed between zinc 2-glycoprotein (ZAG) and prolactin inducible protein (PIP) from human seminal plasma. J. Mol. Biol. 384, 663–672 (2008)

    Article  PubMed  CAS  Google Scholar 

  49. Pompach, P., Brnakova, Z., Sanda, M., Wu, J., Edwards, N., Goldman, R.: Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol. Cell. Proteomics. 12, 1281–1293 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kuo, C.-W., Chen, C.-M., Lee, Y.-C., Chu, S.-T., Khoo, K.-H.: Glycomics and proteomics analyses of mouse uterine luminal fluid revealed a predominance of Lewis Y and X epitopes on specific protein carriers. Mo. Cell. Proteomics. 8, 325–342 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Association by a stipend for A.W.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: AW HNB BM. Performed the experiments: AW HNB. Analyzed the data: AW HNB BM. Contributed reagents/materials/analysis tools: BM. Wrote the paper: AW BM.

Corresponding author

Correspondence to Bernd Meyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

ESM 1

(PDF 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegandt, A., Behnken, H.N. & Meyer, B. Unusual N-type glycosylation of salivary prolactin-inducible protein (PIP): multiple LewisY epitopes generate highly-fucosylated glycan structures. Glycoconj J 35, 323–332 (2018). https://doi.org/10.1007/s10719-018-9826-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9826-7

Keywords

Navigation