Skip to main content
Log in

Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The current work aimed to evaluate the influence of adding bamboo cellulose nanofibrils on the performance of poly(vinyl alcohol)—PVA and modified cassava starch—FMM blend nanocomposites. Nanofibrils were produced after 5 and 30 passes through the mechanical defibrillator. Blends formed from PVA and FMM in an 80/20 ratio were used for casting preparation of the nanocomposites reinforced with 6.5% of nanofibrils. Atomic force microscopy showed the deconstruction of the fiber wall with release of the cellulose nanofibrils. A higher degree of nano-fibrillation occurred after 30 passes. The interaction between the polymers and the reinforcement after 30 passes was verified by Fourier transform infrared spectroscopy and scanning electronic microscopy. The higher nano-fibrillation promoted higher homogeneity, cohesion and more compact structure, thus promoting the formation of larger well-defined crystals, which acted as nucleating agents in the matrix, as demonstrated by differential scanning calorimetry and X-ray diffractrometry. It led to improvements of the physical, thermal and mechanical properties of the nanocomposites, conferring them great potential for applications in the plastic film industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278

    Article  CAS  Google Scholar 

  • Adel AM, El-Wahab ZHA, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym 83:676–687

    Article  CAS  Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutjéc P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    Article  CAS  Google Scholar 

  • Almeida C, Rocha SCS, Razer LF (2005) Recobrimento polimérico, germinação e vigor de sementes de brócolos. Scientia Agrícola 62:221–226

    Article  Google Scholar 

  • Almeida DM, Woiciechovski AL, Wosiacki G, Prestes RA, Pinheiro LA (2013) Propriedades físicas, químicas e de barreira em filme formado por blenda de celulose bacteriana e fécula de batata. Polímeros 2:538–546

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials Standards. ASTM D570-98 (2000) Standard Test Methods for Water Absorption of Plastics, EUA

  • American Society for Testing and Materials Standards, ASTM D882-00 (2000) Standard test methods for tensile properties of thin plastic sheeting, EUA

  • Ankerfors M, Lindstrom T (2007) On the manufacture and uses of nanocellulose. In: The 9th international conference on wood & biofiber plastic composites. May 21–23, 2007, Madison

  • Arantes ACC, Almeida C, Dauzacker L, Bianchi ML, Wood D, Williams T, Orts WJ, Tonoli GHD (2017) Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydr Polym 163:101–107

    Article  CAS  Google Scholar 

  • Associação Brasileira da Indústria do Plástico—ABIPLAST (2016). Perfil da Indústria Brasileira de Transformação de Material Plástico, 2015. http://file.abiplast.org.br/download/2016/perfil_2015_ok.pdf. Accessed 21 Nov 2016

  • Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macormol Biosci 4:835–864

    Article  CAS  Google Scholar 

  • Averous L (2004) Biodegradable multiphase system based on plasticized starch: a review. J Macromol Sci Part C Polym Rev 44:231–274

    Article  CAS  Google Scholar 

  • Averous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66:480–493

    Article  CAS  Google Scholar 

  • Barban IN, Bertoni F, Ciardelli G, Cristalinni C, Silvestri D, Coluccio ML, Giusti P (2005) Bioartificial materials baased on blends of dextran and poly (vinyl alcohol-co-acrylic acid). Eur Polym J 41:3004–3010

    Article  CAS  Google Scholar 

  • Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from TEMPO oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557

    Article  CAS  Google Scholar 

  • Biomer (2008) Website of Biomer: Krailling, Germany. http://www.biomer.de/IndexE.html. Accessed 05 Jan 2017

  • Bufalino L, Neto ARS, Tonoli GHD, Fonseca AS, Costa TG, Marconcini JM, Colodette JL, Labory CRG, Mendes LM (2015a) How the chemical nature of Brazilian hardwoods affects nano-fibrillation of cellulose fibers and film optical quality. Cellulose 22:3657–3672

    Article  CAS  Google Scholar 

  • Bufalino L, Tonoli GHD, Costa TG, Protásio TP, Neto ARS, Marconcini JM, Guimarães Junior M, Mendes LM (2015b) Nanocellulose films from Amazon forest wood wastes: structural and thermal properties. Key Eng Mater 668:110–117

    Article  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA’S): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  CAS  Google Scholar 

  • Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161:929–930. https://doi.org/10.1038/161929a0

    Article  CAS  Google Scholar 

  • Carvalho RA, Maria TMC, Moraes ICF, Bergo PVA, Kamimura ES, Habitante AMQB, Sobral PJA (2009) Study of some physical properties of biodegradable films based on blends of gelatin and poly(vinyl alcohol) using a responsesurface methodology. Mater Sci Eng, C 29:485–491

    Article  CAS  Google Scholar 

  • Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90:074302

    Article  CAS  Google Scholar 

  • Cerda E, Ravi-Chandar K, Mahadevan L (2002) Thin films: wrinkling of an elastic sheet under tension. Nature 419:579–580

    Article  CAS  Google Scholar 

  • Chaker A, Alila S, Mutjé P, Rei Vilar M, Boufi S (2013) Effect of the hemicellulose content on the nanofibrillation behaviour of cellulose pulps. Cellulose 20:2863–2875

    Article  CAS  Google Scholar 

  • Chaker A, Mutjé P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259

    Article  CAS  Google Scholar 

  • Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632

  • Chang PR, Jian R, Yu J, Ma X (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:421–426

    Google Scholar 

  • Chen X, Guo Q, Mi Y (1998) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Bamboo fiber reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899

    Article  CAS  Google Scholar 

  • Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohidr polym 73:8–17

    Article  CAS  Google Scholar 

  • Chen C, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250

    Article  CAS  Google Scholar 

  • Choi WS, Han JH (2001) Physical and mechanical properties os pea-protein-based edible films. J Food Sci 66:319–322

    Article  CAS  Google Scholar 

  • Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polym Degrad Stabil 91:1147–1155

    Article  CAS  Google Scholar 

  • Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotubereinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798

    Article  CAS  Google Scholar 

  • Corradini E, Morais LC, Rosa MF, Mazzetto SE, Mattoso LH, Agnelli JAMA (2006) preliminar study for the use of material natural fibres as reinforcement in starch-gluten-glycerol matriz. Macromol Symp 245–246:558–564

    Article  CAS  Google Scholar 

  • Correia JADC, Junior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresource Technol 139:249–256

    Article  CAS  Google Scholar 

  • Correia VC, Santos V, Sain M, Santos SF, Leão AL, Savastano Junior H (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organossolv pulp. Cellulose 23:2971–2987

    Article  CAS  Google Scholar 

  • Coutinho FMB, Mello IL, Santa Maria LC (2003) Polietileno: principais tipos, propriedades e aplicações. Polímeros 13:01–13

    Article  CAS  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem J 75:1–9

    Article  CAS  Google Scholar 

  • Das K, Ray D, Bandyopadhyay NR, Gupta A, Sengupta S, Sahoo S (2010) Preparation and characterization of croos-linked starch/poly(vinyl alcohol) green films with low moisture absorption. Ind Eng Chem Res 49:2176–2185

  • Ding Z, Liu X, Liu Y, Zhang L (2016) Enhancing the compatibility, hidrophylicity and mechanical properties of polysulfone ultrafiltration menbranes with lignocellulose nanofibrils. Polym 8:349. https://doi.org/10.3390/polym8100349

    Article  CAS  Google Scholar 

  • Doak KW (1986) Ethylene polymers. In: Mark HM, Bilakes NM, Overberg CG, Mendes G (eds) Encyclopedia of polymer science and engineering, vol 6. Wiley, New York

    Google Scholar 

  • Driemeier C, Mendes FM, Santucci BS, Pimenta MTB (2015) Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse. Cellulose 22:2183–2195

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Viegel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elazzouzzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribuition of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

  • El Quddiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fiber. Carbohydr Polym 86:1221–1229

    Article  CAS  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304

  • Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym 47:245–252

    Article  CAS  Google Scholar 

  • Felton GP (2011) Biodegradable poly(ester amide): synthesis and applications. In: Rodríguez-Galán A, Franco L, Puiggalí J (eds) Biodegradable polymers: processing, degradation and applications. Nova Science Publishers Inc., New York, pp 207–272

    Google Scholar 

  • Flauzino Neto WP, Mariano M, Silva ISV, Silvério HA, Putaux JL, Otaguro H, Pasquini D, Dufresne A (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152

    Article  CAS  Google Scholar 

  • Follain N, Joly C, Dole P, Bliard C (2005) Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addiction and photocrosslinking on starch based materials mechanical properties. Carbohydr Polym 60:185–192

    Article  CAS  Google Scholar 

  • Fonseca CS, Silva TF, Silva MF, Oliveira IRC, Mendes RF, Hein PRG, Mendes LM, Tonoli GHD (2016) Micro/nanofibrilas celulósicas de eucalyptus em fibrocimentos extrudados. Cerne 22:59–68

    Article  Google Scholar 

  • Frank VA, Biederbick KH (1984) Kunststoffe: Kunststoff-Kompendium. Vogel-Buchverlag Würzburg 1984. 1. Aufl., 346 S., 100 Abb., 54 Tab., DM 48—ISBN 3-8023-0135-8

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Fringant C, Rinaldo M, Foray MF, Badet M (1998) Preparation of mixed esters of starch or user of na external plasticizer: two diferente ways to change the properties of starch acetate films. Carbohydr Polym 35:97–106

    Article  Google Scholar 

  • Garve CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575

    Article  CAS  Google Scholar 

  • Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Tecnol 14:241–266

    Article  CAS  Google Scholar 

  • Gopakumar G, Lee JA, Kontopulou M, Parent JS (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 43:5483–5491

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  CAS  Google Scholar 

  • Guimarães Junior M (2011) Caracterização de fibra e polpas de Bambusa Vulgaris Schrad refinadas e sem refino com modificação química visando sua utilização como agente de reforço em matrizes poliméricas. Tese—Rede Temática em Engenharia de Materiais, Universidade Federal de Ouro Preto

  • Guimarães Junior M, Botaro VR, Novack KM, Flauzino Neto WP, Mendes LM, Tonoli GHD (2015a) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:6751–6768

    Article  CAS  Google Scholar 

  • Guimarães Junior M, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015b) Starch/PVA based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83

    Article  CAS  Google Scholar 

  • Guimarães Junior M, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015c) High moisture strength of cassava starch/PVA compatible blends for packaging and agricultural sector. J Polym Res 22:1–18. https://doi.org/10.1007/s10965-015-0834-z

    Article  CAS  Google Scholar 

  • Guimarães IC, Reis KC, Menezes EGT, Rodrigues AC, Silva TF, Oliveira IRN, Vilas Boas EVB (2016) Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films. Ind Crop Prod 89:285–294

    Article  CAS  Google Scholar 

  • Guirguis OW, Moselhey MTH (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4:57–67

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Halpern MG (1975) Pulp mill process-pulping, bleaching, recycling. Noyes Data Corporation, Park Ridge, pp 182–199

    Google Scholar 

  • Helbert W, Cavaillé JY, Dufresne A (2004) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  Google Scholar 

  • Ifuku S, Nogi M, Yoshioka M, Morimoto M, Yano H (2010) Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic condition. Carbohydr Polym 81:134–139

    Article  CAS  Google Scholar 

  • Ioelovich M, Leykin A (2008) Structural investigations of various cotton fibers and cotton celluloses. Bioresources 3:170–177

  • Ishiaku US, Pang KW, Lee WS, Ishak ZA (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (caprolactone). Eur Polym J 38:393–401

    Article  CAS  Google Scholar 

  • Ishihara M (2002) Photo-crosslinkable chitosan hydrogel as a wound dressing and a biological adhesive. Trends Glycosci Glyc 14:331–341

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Matter Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026

    Article  CAS  Google Scholar 

  • Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromol 12:831–836

    Article  CAS  Google Scholar 

  • Jayasekara R, Harding I, Bowater I, Chrystie GBY, Lonergan GT (2004) Preparation, surface modification and characterization of solution cast starch PVA blended films. Polym Test 23:17–27

    Article  CAS  Google Scholar 

  • Jonjankiat S, Wittaya T, Sridach W (2011) Improvement of Poly (Vinyl Alcohol) adhesives with cellulose microfiber from sugarcane bagasse. Iran Polym J 20:305–317

    CAS  Google Scholar 

  • Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481

    Article  CAS  Google Scholar 

  • Kaboorani A, Riedl B, Blanchet P, Felin M, Hosseinaei O, Wang S (2012) Nanocrystalline celulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive. Eur Polym J 48:1829–1837

    Article  CAS  Google Scholar 

  • Kafle K, Greeson K, Lee C, Kim SH (2014) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84:1692–1699

    Article  CAS  Google Scholar 

  • Karimi S, Tahir P, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885

    Article  CAS  Google Scholar 

  • Kavoosi G, Nateghpoor B, Dadfar SMM, Dadfar SMA (2014) Antioxidant, antifungal, water binding, and mechanical properties of poly (vinyl alcohol)film incorporated with essential oil as a potential wound dressing material. J Appl Polym Sci. https://doi.org/10.1002/app.40937

    Google Scholar 

  • Khan MA, Bhattacharia SK, Kader MA, Bahari K (2006) Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydr Polym 63:500–506

    Article  CAS  Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  Google Scholar 

  • Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM (2010) Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polym Degrad Stab 59:99–107

    Article  CAS  Google Scholar 

  • Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  CAS  Google Scholar 

  • Kirwan M, Strawbridge J (2003) Plastics in food packaging. In: Coles R, McDowell D, Kirwan MJ (eds) Food packaging technology. CRC Press LLC, Boca Raton, pp 174–240

    Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hebler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and applicaion. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  • Kuciel S, Liber-Kneć A, Zajchowski S (2009) Composites based on polypropylene recyclates and natural fibers. Polimery 55:718–725

    Google Scholar 

  • Kuciel S, Kuźniar P, Liber-Kneć A (2010) Polymer biocomposites with renewable sources. Arch Foundry Eng 10:53–56

    Google Scholar 

  • Labuschagne PW, Germishuizen WA, Verryn SMC, Moolman FS (2008) Improved oxygen barrier performance of poly(vinyl alcohol) films through hydrogen bond complex with poly(methyl vinyl ether-co-maleic acid). Eur Polym J 44:2146–2152

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:20, Article ID 631013. https://doi.org/10.1155/2014/631013

  • Li B, Xie B (2004) synthesis and characterization of konjac glucomannan/poly(vinyl alcohol) interpenetrating polymer networks. J Appl Polym Sci 93:2775–2780

    Article  CAS  Google Scholar 

  • Li XB, Shape TF, Peter GF, Hse CY, Eberhardt TL (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci 19:6–12

    Google Scholar 

  • Li M, Wang LJ, Li D, Cheng YL, Adhikar B (2014) Preparation and characterization of cellulose nanofibers fromde-pectinated sugar beet pulp. Carbohydr Polym 102:1346–1403

    Google Scholar 

  • Liang R, Yuan H, Xi G, Zhou Q (2009) Synthesis of wheat straw-g-poly (acrylic acid) superabsorbent composites and release of urea from it. Carbohydr Polym 77:181–187

    Article  CAS  Google Scholar 

  • Limpan N, Prodpran T, Benjakul S, Prasarpran S (2012) Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll 29:226–233

    Article  CAS  Google Scholar 

  • Liu Y, Donovan JA (1995) Miscibility and crystallization of semicrystalline nylon 6 and amorphous nylon 6IcoT blends. Polymer 36:4797–4803

    Article  CAS  Google Scholar 

  • Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A Appl Sci Manuf 39:738–746

    Article  CAS  Google Scholar 

  • Lundahl MJ, Cunha AG, Rojo E, Papageorgiou AC, Rautkari L, Arboleda JC, Rojas OJ (2016) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:30695. https://doi.org/10.1038/srep30695

    Article  CAS  Google Scholar 

  • Luz SM, Del Rio J, Rocha GJM, Gonçalves AR, Del’Arco Jr AP (2008) Cellulose and Cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos Part A Appl Sci and Manuf 39:1362–1369

  • Mahdavi H, Mirzadeh H, Zohuriaan-Mehr MJ, Talebnezhad F (2013) Poly(vinyl alcohol)/chitosan/clay nano-composite films. J Am Sci 9:203–214

    Google Scholar 

  • Mali S, Karam LBR, Ramos LP, Grossmann MVE (2004) Relationships among the composition and physicochemical properties of starches with the characteristics of their films. J Agric Food Chem 52:7720–7725

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473

    Article  CAS  Google Scholar 

  • Mandelkern L (2004) Crystallization of polymers—kinetics and mechanisms, vol 2, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mansur HE, Sadahira CM, Souza AN, Mansur AP (2008) FTIR spectroscopy characterization of poly (vinyl álcool) hydrogel with diferente hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  • Mao LJ, Imam S, Gordon S, Cinelli P, Chiellin E (2000) Extruded cornstarch–glycerol–polyvinyl alcohol blends: mechanical properties, morphology and biodegradability. J Polym Environ 8:205–211

    Article  CAS  Google Scholar 

  • Maria TMC, Carvalho RA, Sobral PJA, Habitante AMBQ, Solorza-Feria J (2008) The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatina blends. J Food Eng 87:191–199

    Article  CAS  Google Scholar 

  • Marques AP, Reis RL, Hunt JA (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23:1471–1478

    Article  CAS  Google Scholar 

  • Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310

    Article  CAS  Google Scholar 

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074

    Article  CAS  Google Scholar 

  • Matzinos P, Tsuki V, Kontoyiannis A, Panayiotou C (2002) Processing and characterization of starch/ polycaprolactone products. Polym Degrad Stab 77:17–24

    Article  CAS  Google Scholar 

  • Minnesota Soybean Research & Promotion Council—MSR&PC (2014) Marketplace opportunities for integration of biobased and conventional plastics. AURI: Agricultural Utilization Research Institute. http://www.auri.org/assets/2014/09/AIC185.biobased1.pdf. Accessed 30 Sept 2016

  • Mirmehdi S, Hein PRGH, Sarantópoulos CIGL, Dias MV, Tonoli GHD (2017) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2017.11.007)

    Google Scholar 

  • Missou K, Martola F, Belgacem MN, Bras J (2013) Effect of chemically modified nanofibrillated celulose addition on the properties of fiber-based materials. Ind Crop Prod 48:98–105

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  • Moldão-Martins M, Beirão-da-Costa SM, Beirão-da-Costa ML (2003) The effects of edible coatings on postharvest quality of the Bravo de Esmolfe apple. Eur Food Res Technol 217:325–328

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Murray XJ, Holcroft DM, Cook NC, Wand SJE (2005) Postharvest quality of Laetitia and songold (Prunus salicina Lindell) plums as affected by preharvest shading treatments. Postharvest Biol Technol 37:81–92

    Article  Google Scholar 

  • Musca D, Adhikari B, Chudhary DS (2012) Comparative study of film forming behavior of low and high amylose starches using glycerol and xylitol platicizer. J Food Eng 109:189–201

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Materi Sci Process 78:547–552

    Article  CAS  Google Scholar 

  • Nan S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Oksanen T, Buchert J, Viikari L (2009) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung Int J Biol Chem Phys Technol Wood 51:355–360. https://doi.org/10.1515/hfsg.1997.51.4.355

    Google Scholar 

  • Olabarrieta I (2005) Strategies to improve the aging, barrier and mechanical properties of chitosan, whey and wheat gluten protein films. These (Doctored)—Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden. http://www.diva-portal.org/smash/get/diva2:7916/FULLTEXT01.pdf. Accessed 21 Oct 2016

  • Oliveira RP, Driemeier C (2013) CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Crystallogr 46:1196–1210

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fiber and their thermoplastic polycarbonate composites. Int J Polym Sci 2012:1–6

    Article  CAS  Google Scholar 

  • Park S, Zhao Y (2004) Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J Agric Food Chem 52:1933–1939

    Article  CAS  Google Scholar 

  • Pereira ALS, Nascimento DM do, Morais JPS, Souza Filho M de SM, Rosa M de F (2010) Valorização de resíduos agroindustriais: uso do pseudocaule de bananeira como matéria-prima para obtenção de nanoestruturas de celulose. In: Encontro de Iniciação Científica da Embrapa Agroindústria Tropical, 8, 2010, Fortaleza. Resumos. Fortaleza: Embrapa Agroindústria Tropical, 2010. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/34438/1/RE10163.pdf. Accessed 15 Sept 2016

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Plastics Europe Market (2015) Research Group (PEMRG)/Consultic Marketing and Industrieberatung GmbH. Plastics—the facts 2015. An analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/en/resources/market-data. Accessed 07 Nov 2016

  • Plastics Europe Market (2016) Research Group (PEMRG)/Consultic Marketing and Industrieberatung GmbH. Plastics—the facts 2016. An analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/en/resources/market-data. Accessed 07 Nov 2016

  • Plastics Europe Market (2017) Research Group (PEMRG)/Consultic Marketing and Industrieberatung GmbH. World and EU plastics production data. http://www.plasticseurope.org/Document/plastics—the-facts-2017.aspx. Accessed 28 Jan 2018

  • Podsiadlo P, Cho SY, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6:2914–2918

    Article  CAS  Google Scholar 

  • Poletto M, Ornaghi HL Jr, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  Google Scholar 

  • Ricciardi R, Auriemma F, Rosa C, Lauprétre F (2004) X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927

    Article  CAS  Google Scholar 

  • Rizzieri R, Mahadevan L, Vaziri A, Donald A (2006) Superficial wrinkles in stretched, drying gelatin films. Langmuir 22:3622–3626

    Article  CAS  Google Scholar 

  • Russo R, Malinconico M, Petti L, Romano G (2005) Physical behavior of biodegradable alginate—poly (vinyl alcohol) blend films. J Polym Sci B Polym Phys 43:1205–1213

    Article  CAS  Google Scholar 

  • Sakurada I, Iuchino K, Okada A (1950) Bull Inst Chen Res. Kyoto Univ 23:78

    CAS  Google Scholar 

  • Sanchez EMS, Cabral LC, Felisberti MI (2000) Envelhecimento térmico do poli (tereftalato de butileno): alterações no grau de cristalinidade. In: Anais do Congresso Brasileiro de Engenharia e Ciência dos Materiais, p 14, Águas de São Pedro, SP, 2000

  • Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2016) Development and characterization of sugar palm starch and poly (lactic acid) bilayer films. Carbohydr Polym 146:36–45

    Article  CAS  Google Scholar 

  • Sarantópoulos CGL, Oliveira LM, Padula M, Coltro L, Alves RMV, Garcia EEC (2002) Embalagens Plásticas Flexíveis: principais polímeros e avaliação de propriedades. CETEA/ITAL, Campinas

    Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151

    Article  CAS  Google Scholar 

  • Scatolino MV, Bufalino L, Mendes LM, Guimarães Junior M, Tonoli GHD (2017a) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci Technol 51:1–21

    Article  CAS  Google Scholar 

  • Scatolino MV, Silva DW, Bufalino L, Tonoli GHD, Mendes LM (2017b) Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia Eng 200:155–161

    Article  CAS  Google Scholar 

  • Shebani AN, Van Reenen AJ, Meincken M (2008) The effect of wood extractives on thermal stability of different wood-LLDPE composites. Termochim Acta 481:52–56

    Article  CAS  Google Scholar 

  • Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770

    Article  CAS  Google Scholar 

  • Siddaramaiah S, Raj B, Somashekar R (2004) Structure–property relation in polyvinyl alcohol/starch composites. J Appl Polym Sci 91:630–635

    Article  CAS  Google Scholar 

  • Silva FJ, Gomide JL, Colodette JL, Oliveira Filho AC (2002) Efeito da redução da sulfidez, com adição de antraquinona, nas emissões poluentes e na qualidade da polpa kraft de eucalipto. O Papel 63:77–87

    CAS  Google Scholar 

  • Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436

    Article  CAS  Google Scholar 

  • Sim K, Youn HJ (2016) Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose 23:1383–1392

    Article  CAS  Google Scholar 

  • Sin LT, Rahman WAWA, Rahmat AR, Khan MI (2010) Detection of synergistic interactions of polyvinyl alcohol–cassava starch blends through DSC. Carbohydr Polym 79:224–226

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Skeist I (1990) Handbook of adhesives, 3rd edn. Champman & Hall, New York

    Book  Google Scholar 

  • Sobral PJA (2000) Influência da espessura de biofilmes feitos a base de proteínas miofibrilares sobre suas propriedades funcionais. Pesq Agropec Bras 35:1251–1259

    Article  Google Scholar 

  • Soccol CR, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A, Pandey A (2011) Lignocellulosic bioethanol: current status and future perspectives. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Academic Press, San Diego, pp 101–122

    Chapter  Google Scholar 

  • Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Properties and sorption studies of chitosan-polyvinyl alcohol blend films. Carbohydr Polym 53:431–438

    Article  CAS  Google Scholar 

  • Srithep Y, Li-Sheng T, Sabo R, Clemons C (2012) Nanofibrillated celulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbono dioxide and foaming. Cellulose 19:1209–1223

    Article  CAS  Google Scholar 

  • Sterberg O, Vartiainen M, Lucenius J, Hippi J, Seppala U, Serimaa R, Laine JA (2013) fast method to produce Strong NFC films as a platform for barrier and functional materials. Appl Mater Inter 5:4640–4647

    Article  CAS  Google Scholar 

  • Suckling ID (1988) Enhanced cleavage of β-aryl ether bonds in lignin model compounds during sulphite-anthraquinone pulping. J Wood Chem Technol 8:43–71

    Article  CAS  Google Scholar 

  • Suess HU (2010) Pulp bleaching today. Walter de Gruyter GmbH & Co., Berlin

    Book  Google Scholar 

  • Szabo AM, Koltai L, Fodor L (2013) Comparative analysis of aluminium and aluminium free recycled multilayered beverage carton packaging. J Graph Eng Des 42:13–19

    Google Scholar 

  • Tan XY, Abd-Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

  • Takahashi Y (1997) Neutron structure analysis of poly(vinyl alcohol). J Polym Sci B Polym Phys 35:193–198

  • Tang X, Alavi S (2012) Structure and physical properties of starch/polyvinyl alcohol/laponite RD nanocomposite films. J Agric Food Chem 60:1954–1962

    Article  CAS  Google Scholar 

  • TAPPI Useful Method (1993) Technicall Association of the Pulp and Paper Industry: Ash in wood, pulp, paper and paperboard: combustion at 525 °C (Test Method T 211 cm-93). Atlanta, USA

  • TAPPI Useful Method (1994) Technicall Association of the Pulp and Paper Industry: Holocellulose in wood (Test Method T 9 m-94). Atlanta, USA

  • TAPPI Useful Method (1997a) Technicall Association of the Pulp and Paper Industry: Sampling and preparing wood for analysis (Test Method T 257 cm-97). Atlanta, USA

  • TAPPI Useful Method (1997b) Technicall Association of the Pulp and Paper Industry: Preparation of wood for chemical analysis (Test Method T 264 cm-97). Atlanta, USA

  • TAPPI Useful Method (1997c) Technicall Association of the Pulp and Paper Industry: Solvent extractives of wood and pulp (Test Method T 204 cm-97). Atlanta, USA

  • TAPPI Useful Method (1998a) Technicall Association of the Pulp and Paper Industry: Acid insoluble lignin in wood and pulp (Test Method T 222 cm-98). Atlanta, USA

  • TAPPI Useful Method (1998b) Technicall Association of the Pulp and Paper Industry: Grammage of paper and paperboard—Weight per unit area (Test Method T 410 om-98). Atlanta, USA

  • TAPPI Useful Method (1998c) Technicall Association of the Pulp and Paper Industry: Standard conditioning and testing atmospheres for paper, board, pulp handsheets, and related products (Test Method T 402 cm-98). Atlanta, USA

  • TAPPI Useful Method (1999) Technicall Association of the Pulp and Paper Industry: Alpha, beta and Gama cellulose in pulp (Test Method T 203 cm-99). Atlanta, USA

  • Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from eucaliptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sa VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1–18

    Article  CAS  Google Scholar 

  • Utracki LA (1989) Polymer and blends: thermodynamics and rheology, 1st edn. Hanser Publishers, New York

    Google Scholar 

  • Vieille B, Albouy W, Chevalier L, Taleb L (2013) About the influence of stamping on thermoplastic-based composites for aeronautical applications. Compos Part B Eng 45:821–834

    Article  CAS  Google Scholar 

  • Vieira MGA, Silva MA, Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IV. Biomacromol 5:1385–1391

    Article  CAS  Google Scholar 

  • Wahab R, Mustafa MT, Salam MA, Sudin M, Samsi HW, Rasat MSM (2013) Chemical composition of four cultivated tropical bamboo in genus Gigantochloa. J Agric Sci 5:66–75

    Google Scholar 

  • Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  CAS  Google Scholar 

  • Wang J, Lu Y, Yuan H, Dou P (2008) Crystallization, orientation morphology, and mechanical properties of biaxially oriented starch/polyvinyl alcohol films. J Appl Polym Sci 110:523–530

    Article  CAS  Google Scholar 

  • Wolf O (2005) Techno-economic feasibility of large-scale production of bio-based polymers in europe. In: Crank M, Patel M, Marscheider-Weidemann F, Schleich J, Hüsing B, Angerer G (eds) Technal report series. Institute for Prospective Technological Studies, Spain

    Google Scholar 

  • Xiang Z, Goo W, Chen L, Lan W, Zhu JY, Runge T (2016) A comparison of cellulose nanofibrils produced from cladophore glomerate algae and bleached eucalyptus pulp. Cellulose 23:493–503

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Yoshizawa N, Satoh T, Yokota S, IdeI T (1991) Lignification and peroxidase activity in bamboo shoots (Phyllostachys edulis). Holzforschung 45:169–174

    Article  CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zhai M, Yoshii F, Kume T (2003) Radiation modification of starch-based plastic sheets. Carbohydr Polym 52:311–317

    Article  CAS  Google Scholar 

  • Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Thanks, are also given to the Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Rede Temática de Engenharia de Materiais (REDEMAT). Thanks also to the Instituto de Tecnologia de Alimentos/Centro de Tecnologia de Embalagem (ITAL/CETEA), DCF (UFLA-MG) and Forestry nanotechnology laboratory (UFLA-MG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Guimarães Junior.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães Junior, M., Teixeira, F.G. & Tonoli, G.H.D. Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose 25, 1823–1849 (2018). https://doi.org/10.1007/s10570-018-1691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1691-9

Keywords

Navigation