Skip to main content

Advertisement

Log in

The potential role of platelets in the consensus molecular subtypes of colorectal cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The consensus molecular subtypes (CMS) in colorectal cancer (CRC) represent distinct molecular subcategories of disease as reflected by comprehensive molecular profiling. The four CMS subtypes represent unique biology. CMS1 represents high immune infiltration. CMS2 demonstrates upregulation of canonical pathways such as WNT signaling. Widespread metabolic changes are seen in CMS3. CMS4 represents a mesenchymal phenotype with hallmark features including complement activation, matrix remodeling, angiogenesis, epithelial-mesechymal transition (EMT), integrin upregulation and stromal infiltration. In contrast to this new paradigm, a number of observations regarding CRC remain disconnected. Cancers are associated with thrombocytosis. Venous thromboembolic events are more likely in malignancy and may signify worse prognosis. Aspirin, an anti-platelet agent, has been linked in large observational studies to decrease incidence of adenocarcinoma and less advanced presentations of cancer, in particular CRC. Inflammatory bowel disease is a risk factor for CRC. Gross markers to recognize the immunothrombotic link such as the platelet to lymphocyte ratio are associated with poorer outcomes in many cancers. Platelets are increasingly recognized for their dual roles in coordinating the immune response in addition to hemostasis. Here, we explore how these different but related observations coalesce. Platelets, as first responders to pathogens and injury, form the link between hemostasis and immunity. We outline how platelets contribute to tumorigenesis and how some disconnected ideas may be linked through inflammation. CMS4 through its shared mechanisms has predicted platelet activation as a hallmark feature. We demonstrate a platelet gene expression signature that predicts platelet presence within CMS4 tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roepman, P., Schlicker, A., Tabernero, J., Majewski, I., Tian, S., Moreno, V., et al. (2013). Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. International Journal of Cancer. doi:10.1002/ijc.28387.

  2. Budinska, E., Popovici, V., Tejpar, S., D’Ario, G., Lapique, N., Sikora, K. O., et al. (2013). Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. The Journal of Pathology. doi:10.1002/path.4212.

  3. Schlicker, A., Beran, G., Chresta, C. M., Mcwalter, G., Pritchard, A., Weston, S., et al. (2012). Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Medical Genetics, 5. doi:10.1186/1755-8794-5-66.

  4. Sadanandam, A., Lyssiotis, C. A., Homicsko, K., Collisson, E. A., Gibb, W. J., Wullschleger, S., et al. (2013). A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine, 19(5), 619–625. doi:10.1038/nm.3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Sousa, E., Melo, F., Wang, X., Jansen, M., Fessler, E., Trinh, A., de Rooij, L. P. M. H., et al. (2013). Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nature Medicine, 19(5), 614–618. doi:10.1038/nm.3174.

    Article  CAS  Google Scholar 

  6. Marisa, L., de Reyniés, A., Duval, A., Selves, J., Gaub, M. P., Vescovo, L., et al. (2013). Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Medicine, 10(5). doi:10.1371/journal.pmed.1001453.

  7. Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21(11), 1350–1356. doi:10.1038/nm.3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trousseau, A. (n.d.). Lectures on clinical medicine, delivered at the Hôtel-Dieu, Paris. London, 1868–72.

  9. Blom, J. W., Vanderschoot, J. P. M., Oostindiër, M. J., Osanto, S., van der Meer, F. J. M., & Rosendaal, F. R. (2006). Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: results of a record linkage study. Journal of Thrombosis and Haemostasis, 4(3), 529–535. doi:10.1111/j.1538-7836.2006.01804.x.

    Article  CAS  PubMed  Google Scholar 

  10. Agnelli, G., & Verso, M. (2011). Management of venous thromboembolism in patients with cancer. Journal of Thrombosis and Haemostasis, 9(1 S), 316–324. doi:10.1111/j.1538-7836.2011.04346.x.

    Article  PubMed  Google Scholar 

  11. Key, N. S., Khorana, A. A., Mackman, N., McCarty, O. J. T., White, G. C., Francis, C. W., et al. (2016). Thrombosis in cancer: research priorities identified by a national cancer institute/national heart, lung, and blood institute strategic working group. Cancer Research, 76(13), 3671–3675. doi:10.1158/0008-5472.CAN-15-3100.

    Article  CAS  PubMed  Google Scholar 

  12. Levitan, N., Dowlati, A., Remick, S. C., Tahsildar, H. I., Sivinski, L. D., Beyth, R., & Rimm, A. A. (1999). Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine, 78(5), 285–291 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10499070.

    Article  CAS  PubMed  Google Scholar 

  13. Levin, J. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114(4), 497. doi:10.1001/archinte.1964.03860100079008.

    Article  CAS  PubMed  Google Scholar 

  14. Sørensen, H. T., Mellemkjaer, L., Olsen, J. H., & Baron, J. A. (2000). Prognosis of cancers associated with venous thromboembolism. The New England Journal of Medicine, 343(25), 1846–1850. doi:10.1056/NEJM200012213432504.

    Article  PubMed  Google Scholar 

  15. Chen, W., Zhang, Y., Yang, Y., Zhai, Z., & Wang, C. (2015). Prognostic significance of arterial and venous thrombosis in resected specimens for non-small cell lung cancer. Thrombosis Research, 136(2), 451–455. doi:10.1016/j.thromres.2015.06.014.

    Article  CAS  PubMed  Google Scholar 

  16. Kourelis, T. V., Wysokinska, E. M., Wang, Y., Yang, P., Mansfield, A. S., & Tafur, A. J. (2014). Early venous thromboembolic events are associated with worse prognosis in patients with lung cancer. Lung Cancer, 86(3), 358–362. doi:10.1016/j.lungcan.2014.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chadha, A. S., Kocak-Uzel, E., Das, P., Minsky, B. D., Delclos, M. E., Mahmood, U., et al. (2015). Paraneoplastic thrombocytosis independently predicts poor prognosis in patients with locally advanced pancreatic cancer. Acta Oncology (Stockh Swed), 54(7), 971–978. doi:10.3109/0284186X.2014.1000466.

    Article  CAS  Google Scholar 

  18. Chew, H. K., Wun, T., Harvey, D., Zhou, H., & White, R. H. (2006). Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Archives of Internal Medicine, 166(4), 458–464. doi:10.1001/.458.

    Article  PubMed  Google Scholar 

  19. Algra, A. M., & Rothwell, P. M. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. The Lancet Oncology, 13(5), 518–527. doi:10.1016/S1470-2045(12)70112-2.

    Article  CAS  PubMed  Google Scholar 

  20. Rothwell, P. M., Price, J. F., Fowkes, F. G. R., Zanchetti, A., Roncaglioni, M. C., Tognoni, G., et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 379(9826), 1602–1612. doi:10.1016/S0140-6736(11)61720-0.

    Article  CAS  PubMed  Google Scholar 

  21. Cuzick, J., Thorat, M. A., Bosetti, C., Brown, P. H., Burn, J., Cook, N. R., et al. (2015). Estimates of benefits and harms of prophylactic use of aspirin in the general population. Annals of Oncology, 26(1), 47–57. doi:10.1093/annonc/mdu225.

    Article  CAS  PubMed  Google Scholar 

  22. Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews. Immunology, 11(4), 264–274. doi:10.1038/nri2956.

    Article  CAS  PubMed  Google Scholar 

  23. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  24. Eaden, J. A., Abrams, K. R., & Mayberry, J. F. (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 48(4), 526–535. doi:10.1136/gut.48.4.526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ullman, T. A., & Itzkowitz, S. H. (2011). Intestinal inflammation and cancer. Gastroenterology, 140(6), 1807–1816. doi:10.1053/j.gastro.2011.01.057.

    Article  CAS  PubMed  Google Scholar 

  26. Jess, T., Rungoe, C., & Peyrin-Biroulet, L. (2012). Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clinical Gastroenterology and Hepatology, 10(6), 639–645. doi:10.1016/j.cgh.2012.01.010.

    Article  PubMed  Google Scholar 

  27. Rutter, M. D., Saunders, B. P., Wilkinson, K. H., Rumbles, S., Schofield, G., Kamm, M. A., et al. (2006). Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology, 130(4), 1030–1038. doi:10.1053/j.gastro.2005.12.035.

    Article  PubMed  Google Scholar 

  28. Zou, Z.-Y., Liu, H.-L., Ning, N., Li, S.-Y., DU, X.-H., & Li, R. (2016). Clinical significance of pre-operative neutrophil lymphocyte ratio and platelet lymphocyte ratio as prognostic factors for patients with colorectal cancer. Oncology Letters, 11(3), 2241–2248. doi:10.3892/ol.2016.4216.

    PubMed  PubMed Central  Google Scholar 

  29. Messager, M., Neofytou, K., Chaudry, M. A., & Allum, W. H. (2015). Prognostic impact of preoperative platelets to lymphocytes ratio (PLR) on survival for oesophageal and junctional carcinoma treated with neoadjuvant chemotherapy: A retrospective monocentric study on 153 patients. European Journal of Surgical Oncology, 41(10), 1316–1323. doi:10.1016/j.ejso.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  30. Cummings, M., Merone, L., Keeble, C., Burland, L., Grzelinski, M., Sutton, K., et al. (2015). Preoperative neutrophil:lymphocyte and platelet:lymphocyte ratios predict endometrial cancer survival. British Journal of Cancer, 113(2), 311–320. doi:10.1038/bjc.2015.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y., Xu, F., Pan, J., Zhu, Y., Shao, X., Sha, J., et al. (2016). Platelet to lymphocyte ratio as an independent prognostic indicator for prostate cancer patients receiving androgen deprivation therapy. BMC Cancer, 16(1), 329. doi:10.1186/s12885-016-2363-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhou, X., Du, Y., Huang, Z., Xu, J., Qiu, T., Wang, J., et al. (2014). Prognostic value of PLR in various cancers: a meta-analysis. PloS One, 9(6). doi:10.1371/journal.pone.0101119.

  33. Zimmerman, G. A., & Weyrich, A. S. (2008). Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3). doi:10.1161/ATVBAHA.107.160218.

  34. Mcmanus, D. D., & Freedman, J. E. (2015). MicroRNAs in platelet function and cardiovascular disease. Nature Reviews. Cardiology, 12(12), 1–7. doi:10.1038/nrcardio.2015.101.

    Article  CAS  Google Scholar 

  35. Landry, P., Plante, I., Ouellet, D. L., Perron, M. P., Rousseau, G., & Provost, P. (2009). Existence of a microRNA pathway in anucleate platelets. Nature Structural & Molecular Biology, 16(9), 961–966. doi:10.1038/nsmb.1651.

    Article  CAS  Google Scholar 

  36. Denis, M. M., Tolley, N. D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., et al. (2005). Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell, 122(3), 379–391. doi:10.1016/j.cell.2005.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Furie, B., & Furie, B. C. (2005). Thrombus formation in vivo. Journal of Clinical Investigation, 115(12), 3355. doi:10.1172/JCI26987.The.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIb??-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312. doi:10.1016/j.bpj.2010.11.084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113. doi:10.1161/ATVBAHA.112.300522.

    Article  CAS  PubMed  Google Scholar 

  40. Fredrickson, B. J., Dong, J. F., McIntire, L. V., & López, J. a. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693. doi:10.1111/j.1365-2141.1986.tb07552.x.

    CAS  PubMed  Google Scholar 

  41. Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action” focus on glycoprotein Ib / V / IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197. doi:10.1016/S1050-1738(00)00062-1.

    Article  CAS  PubMed  Google Scholar 

  42. Storey, R. F., Sanderson, H. M., White, A. E., May, J. A., Cameron, K. E., & Heptinstall, S. (2000). The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. British Journal of Haematology, 110(4), 925–934. doi:10.1046/j.1365-2141.2000.02208.x.

    Article  CAS  PubMed  Google Scholar 

  43. Mine, S., Fujisaki, T., Suematsu, M., & Tanaka, Y. (2001). Activated platelets and endothelial cell interaction with neutrophils under flow conditions. Internal Medicine, 40(0918–2918 (Print)), 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  44. Elzey, B. D., Schmidt, N. W., Crist, S. A., Kresowik, T. P., Harty, J. T., Nieswandt, B., & Ratliff, T. L. (2008). Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood, 111(7), 3684–3691. doi:10.1182/blood-2007-05-091728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henn, V., Slupsky, J. R., Gräfe, M., Anagnostopoulos, I., Förster, R., Müller-Berghaus, G., & Kroczek, R. A. (1998). CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature, 391(6667), 591–594. doi:10.1038/35393.

    Article  CAS  PubMed  Google Scholar 

  46. Danese, S., de la Motte, C., Reyes, B. M. R., Sans, M., Levine, A. D., & Fiocchi, C. (2004). Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. Journal of Immunology, 172(4), 2011–2015. doi:10.4049/jimmunol.172.4.2011.

    Article  CAS  Google Scholar 

  47. Lindemann, S., Tolley, N. D., Dixon, D. A., McIntyre, T. M., Prescott, S. M., Zimmerman, G. A., & Weyrich, A. S. (2001). Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. The Journal of Cell Biology, 154(3), 485–490. doi:10.1083/jcb.200105058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature reviews. Cancer, 9(4), 239–252. doi:10.1038/nrc2618.

    CAS  PubMed  Google Scholar 

  49. Aslam, R., Speck, E. R., Kim, M., Crow, A. R., Bang, K. W. A., Nestel, F. P., … Semple, J. W. (2015). Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo, 107(2), 637–642. doi:10.1182/blood-2005-06-2202.Supported.

  50. Andonegui, G., Kerfoot, S., McNagny, K., Ebbert, K., Patel, K., & Kubes, P. (2005). Platelets express functional toll-like receptor-4 (TLR4). Blood, 106(7), 2417–2423. doi:10.1182/blood-2005-03-0916.Supported.

    Article  CAS  PubMed  Google Scholar 

  51. Del Conde, I., Crúz, M. A., Zhang, H., López, J. A., & Afshar-Kharghan, V. (2005). Platelet activation leads to activation and propagation of the complement system. The Journal of Experimental Medicine, 201(6), 871–879. doi:10.1084/jem.20041497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Novoa, B., & Figueras, A. (2012). Current topics in innate immunity II. Advances in Experimental Medicine and Biology, 946, 253–275. doi:10.1007/978-1-4614-0106-3.

    Article  CAS  PubMed  Google Scholar 

  53. Cognasse, F., Hamzeh-Cognasse, H., Laradi, S., Chou, M. L., Seghatchian, J., Burnouf, T., et al. (2015). The role of microparticles in inflammation and transfusion: a concise review. Transfusion and Apheresis Science, 53(2), 159–167. doi:10.1016/j.transci.2015.10.013.

    Article  PubMed  Google Scholar 

  54. Goubran, H., Sabry, W., Kotb, R., Seghatchian, J., & Burnouf, T. (2015). Platelet microparticles and cancer: an intimate cross-talk. Transfusion and Apheresis Science, 53(2), 168–172. doi:10.1016/j.transci.2015.10.014.

    Article  PubMed  Google Scholar 

  55. Mause, S. F., Von Hundelshausen, P., Zernecke, A., Koenen, R. R., & Weber, C. (2005). Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(7), 1512–1518. doi:10.1161/01.ATV.0000170133.43608.37.

    Article  CAS  PubMed  Google Scholar 

  56. Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255. doi:10.1586/14737140.8.8.1247.

    Article  CAS  PubMed  Google Scholar 

  57. Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau’s syndrome): Review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97. doi:10.1007/s10238-013-0230-0.

    Article  CAS  PubMed  Google Scholar 

  58. Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology & Laboratory Medicine, 137(9), 1286–1295. doi:10.5858/arpa.2012-0490-RA.

    Article  Google Scholar 

  59. Hrachovinová, I., Cambien, B., Hafezi-Moghadam, A., Kappelmayer, J., Camphausen, R. T., Widom, A., et al. (2003). Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nature Medicine, 9(8), 1020–1025. doi:10.1038/nm899.

    Article  PubMed  CAS  Google Scholar 

  60. Evangelista, V., Manarini, S., Sideri, R., Rotondo, S., Martelli, N., Piccoli, A., et al. (1999). Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood, 93(3), 876–885. doi:10.1126/SCIENCE.270.5243.1811.

    CAS  PubMed  Google Scholar 

  61. Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469. doi:10.1038/nm1565.

    Article  CAS  PubMed  Google Scholar 

  62. Morrell, C. N., Aggrey, A. A., Chapman, L. M., & Modjeski, K. L. (2014). Emerging roles for platelets as immune and inflammatory cells. Blood, 123(18), 2759–2767. doi:10.1182/blood-2013-11-462432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greaves, N. S., Ashcroft, K. J., Baguneid, M., & Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3), 206–217. doi:10.1016/j.jdermsci.2013.07.008.

    Article  CAS  PubMed  Google Scholar 

  64. Kubo, H., Hayashi, T., Ago, K., Ago, M., Kanekura, T., & Ogata, M. (2014). Temporal expression of wound healing-related genes in skin burn injury. Legal Medicine, 16(1), 8–13. doi:10.1016/j.legalmed.2013.10.002.

    Article  CAS  PubMed  Google Scholar 

  65. Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(SUPPL. 1), 13–33. doi:10.1160/THS10-11-0720.

    Article  CAS  Google Scholar 

  66. Caine, G. J., Stonelake, P. S., Lip, G. Y. H., & Kehoe, S. T. (2002). The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia (New York, N.Y.), 4(6), 465–73. doi:10.1038/sj.neo.7900263.

  67. Sørensen, H. T., Sværke, C., Farkas, D. K., Christiansen, C. F., Pedersen, L., Lash, T. L., et al. (2012). Superficial and deep venous thrombosis, pulmonary embolism and subsequent risk of cancer. European Journal of Cancer, 48(4), 586–593. doi:10.1016/j.ejca.2011.10.032.

    Article  PubMed  Google Scholar 

  68. White, R. H., Chew, H. K., Zhou, H., Parikh-Patel, A., Harris, D., Harvey, D., & Wun, T. (2005). Incidence of venous thromboembolism in the year before the diagnosis of cancer in 528,693 adults. Archives of Internal Medicine, 165(15), 1782–1787. doi:10.1001/archinte.165.15.1782.

    Article  Google Scholar 

  69. Sun, L. M., Chung, W. S., Lin, C. L., Liang, J. A., & Kao, C. H. (2016). Unprovoked venous thromboembolism and subsequent cancer risk: a population-based cohort study. Journal of Thrombosis and Haemostasis, 14(3), 495–503. doi:10.1111/jth.13251.

    Article  PubMed  Google Scholar 

  70. Nordström, M., Lindblad, B., Anderson, H., Bergqvist, D., & Kjellström, T. (1994). Deep venous thrombosis and occult malignancy: an epidemiological study. BMJ, 308(6933), 891–894. doi:10.1136/bmj.308.6933.891.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Timp, J. F., Braekkan, S. K., Versteeg, H. H., & Cannegieter, S. C. (2013). Epidemiology of venous thrombosis. Blood, 122(10), 1712–1723. doi:10.1182/blood-2013-04-460121.

    Article  CAS  PubMed  Google Scholar 

  72. Khorana, A. A. (2010). Venous thromboembolism and prognosis in cancer. Thrombosis Research, 125(6), 490–493. doi:10.1016/j.thromres.2009.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carrier, M., Le Gal, G., Cho, R., Tierney, S., Rodger, M., & Lee, A. Y. (2009). Dose escalation of low molecular weight heparin to manage recurrent venous thromboembolic events despite systemic anticoagulation in cancer patients. Journal of Thrombosis and Haemostasis, 7(5), 760–765. doi:10.1111/j.1538-7836.2009.03326.x.

    Article  CAS  PubMed  Google Scholar 

  74. Steele, M., & Voutsadakis, I. A. (2017). Pre-treatment platelet counts as a prognostic and predictive factor in stage II and III rectal adenocarcinoma. World Journal of Gastrointestinal Oncology, 9(1), 42. doi:10.4251/wjgo.v9.i1.42.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ikeda, M., Furukawa, H., Imamura, H., Shimizu, J., Ishida, H., Masutani, S., et al. (2002). Poor prognosis associated with thrombocytosis in patients with gastric cancer. Annals of Surgical Oncology, 9(3), 287–291. doi:10.1007/BF02573067.

    Article  PubMed  Google Scholar 

  76. Long, Y., Wang, T., Gao, Q., & Zhou, C. (2016). Prognostic significance of pretreatment elevated platelet count in patients with colorectal cancer: a meta-analysis. Oncotarget, 7(49), 81849–81861. doi:10.18632/oncotarget.13248.

    PubMed  PubMed Central  Google Scholar 

  77. Stone, R. L., Nick, A. M., McNeish, I. a., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366, 610–618. doi:10.1056/NEJMoa1110352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nan, H., Hutter, C. M., Lin, Y., Jacobs, E. J., Ulrich, C. M., White, E., et al. (2015). Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA, 313(11), 1133–1142. doi:10.1001/jama.2015.1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frouws, M. A., Rademaker, E., Bastiaannet, E., van Herk-Sukel, M. P. P., Lemmens, V. E., Van de Velde, C. J. H., et al. (2017). The difference in association between aspirin use and other thrombocyte aggregation inhibitors and survival in patients with colorectal cancer. European Journal of Cancer, 77, 24–30. doi:10.1016/j.ejca.2017.02.025.

    Article  CAS  PubMed  Google Scholar 

  80. Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 379(9826), 1591–1601. doi:10.1016/S0140-6736(12)60209-8.

    Article  CAS  PubMed  Google Scholar 

  81. Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., & Meade, T. W. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376(9754), 1741–1750. doi:10.1016/S0140-6736(10)61543-7.

    Article  CAS  PubMed  Google Scholar 

  82. Cook, N. R., Lee, I., Gaziano, J. M., Gordon, D., Ridker, P. M., Manson, J. E., et al. (2005). Low-dose aspirin in the primary prevention of cancer: the Women’s Health Study: a randomized controlled trial. JAMA, 294(1), 47–55. doi:10.1001/jama.294.1.47.

    Article  CAS  PubMed  Google Scholar 

  83. Cook, N. R., Lee, I., Zhang, S. M., Moorthy, M. V., & Buring, J. E. (2013). Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Annals of Internal Medicine, 159(2), 77–85. doi:10.7326/0003-4819-159-2-201307160-00002.

    Article  PubMed  PubMed Central  Google Scholar 

  84. U.S. Preventive Services Task Force. (2007). Routine aspirin or nonsteroidal anti-inflammatory drugs for the primary prevention of colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 146(5), 361–364 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17339621.

    Article  Google Scholar 

  85. Chubak, J., Kamineni, A., Buist, D. S. M., Anderson, M. L., & Whitlock, E. P. (2015). Aspirin use for the prevention of colorectal cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Agency for Healthcare Research and Quality (US). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26491758.

    Google Scholar 

  86. Bibbins-Domingo, K. (2016). Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 164(12), 9015. doi:10.7326/M16-0577.

    Article  Google Scholar 

  87. Ali, R., Toh, H.-C., & Chia, W.-K. (2011, December 14). The utility of aspirin in dukes C and high risk dukes B colorectal cancer—the ASCOLT study: study protocol for a randomized controlled trial. Trials. doi:10.1186/1745-6215-12-261.

  88. Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50. doi:10.1186/s13063-016-1744-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hollen, C. W., Henthorn, J., Koziol, J. A., & Burstein, S. A. (1991). Elevated serum interleukin-6 levels in patients with reactive thrombocytosis. British Journal of Haematology, 79(2), 286–290 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1958487.

    Article  CAS  PubMed  Google Scholar 

  90. Sulai, N. H., & Tefferi, A. (2012). Why does my patient have thrombocytosis? Hematology/Oncology Clinics of North America, 26(2), 285–301. doi:10.1016/j.hoc.2012.01.003.

    Article  PubMed  Google Scholar 

  91. Tang, J., Gao, X., Zhi, M., Zhou, H. M., Zhang, M., Chen, H. W., et al. (2015). Plateletcrit: a sensitive biomarker for evaluating disease activity in Crohn’s disease with low hs-CRP. Journal of Digestive Diseases, 16(3), 118–124. doi:10.1111/1751-2980.12225.

    Article  CAS  PubMed  Google Scholar 

  92. Takeyama, H., Mizushima, T., Iijima, H., Shinichiro, S., Uemura, M., Nishimura, J., et al. (2015). Platelet activation markers are associated with Crohn’s disease activity in patients with low C-reactive protein. Digestive Diseases and Sciences, 60(11), 3418–3423. doi:10.1007/s10620-015-3745-2.

    Article  CAS  PubMed  Google Scholar 

  93. Ekbom, A., Helmick, C., Zack, M., & Adami, H. O. (1990). Ulcerative colitis and colorectal cancer. A population-based study. The New England Journal of Medicine, 323(18), 1228–1233. doi:10.1056/NEJM199011013231802.

    Article  CAS  PubMed  Google Scholar 

  94. Weedon, D. D., Shorter, R. G., Ilstrup, D. M., Huizenga, K. A., & Taylor, W. F. (1973). Crohn’s disease and cancer. The New England Journal of Medicine, 289(21), 1099–1103. doi:10.1056/NEJM197311222892101.

    Article  CAS  PubMed  Google Scholar 

  95. Bernstein, C. N., Blanchard, J. F., Kliewer, E., & Wajda, A. (2001). Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer, 91(4), 854–862. doi:10.1002/cncr.20036.

    Article  CAS  PubMed  Google Scholar 

  96. Canavan, C., Abrams, K. R., & Mayberry, J. (2006). Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Alimentary Pharmacology & Therapeutics, 23(8), 1097–1104. doi:10.1111/j.1365-2036.2006.02854.x.

    Article  CAS  Google Scholar 

  97. Freeman, H.-J. (2008). Colorectal cancer risk in Crohn’s disease. World Journal of Gastroenterology, 14(12), 1810–1811. doi:10.3748/wjg.14.1810.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Annese, V., Daperno, M., Rutter, M. D., Amiot, A., Bossuyt, P., East, J., et al. (2013). European evidence based consensus for endoscopy in inflammatory bowel disease. Journal of Crohn's and Colitis, 7(12), 982–1018. doi:10.1016/j.crohns.2013.09.016.

    Article  PubMed  Google Scholar 

  99. Kornbluth, A., & Sachar, D. B. (2004). Ulcerative colitis practice guidelines in adults (update): American College of Gastroenterology, Practice Parameters Committee. The American Journal of Gastroenterology, 99(7), 1371–1385. doi:10.1111/j.1572-0241.2004.40036.x.

    Article  PubMed  Google Scholar 

  100. Aarnio, M., Mustonen, H., Mecklin, J. P., & Jarvinen, H. J. (1998). Prognosis of colorectal cancer varies in different high-risk conditions. Annals of Medicine, 30(1), 75–80.

    Article  CAS  PubMed  Google Scholar 

  101. Jensen, A. B., Larsen, M., Gislum, M., Skriver, M. V., Jepsen, P., Nørgaard, B., & Sørensen, H. T. (2006). Survival after colorectal cancer in patients with ulcerative colitis: a nationwide population-based Danish study. The American Journal of Gastroenterology, 101, 1283–1287. doi:10.1111/j.1572-0241.2006.00520.x.

    Article  PubMed  Google Scholar 

  102. Watanabe, T., Konishi, T., Kishimoto, J., Kotake, K., Muto, T., & Sugihara, K. (2011). Ulcerative colitis-associated colorectal cancer shows a poorer survival than sporadic colorectal cancer: a nationwide Japanese study. Inflammatory Bowel Diseases, 17(3), 802–808. doi:10.1002/ibd.21365.

    Article  PubMed  Google Scholar 

  103. Han, Y. D., Al Bandar, M. H., Dulskas, A., Cho, M. S., Hur, H., Min, B. S., et al. (2017). Prognosis of ulcerative colitis colorectal cancer vs. sporadic colorectal cancer: propensity score matching analysis. BMC Surgery, 17(1), 28. doi:10.1186/s12893-017-0224-z.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sugita, A., Greenstein, A. J., Ribeiro, M. B., Sachar, D. B., Bodian, C., Panday, A. K., et al. (1993). Survival with colorectal cancer in ulcerative colitis. A study of 102 cases. Annals of Surgery, 218(2), 189–195 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8342999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kavanagh, D. O., Carter, M. C., Keegan, D., Doherty, G., Smith, M. J., Hyland, J. M. P., et al. (2014). Management of colorectal cancer in patients with inflammatory bowel disease. Techn Coloproctol, 18(1), 23–28. doi:10.1007/s10151-013-0981-3.

    Article  CAS  Google Scholar 

  106. Averboukh, F., Ziv, Y., Kariv, Y., Zmora, O., Dotan, I., Klausner, J. M., et al. (2011). Colorectal carcinoma in inflammatory bowel disease: a comparison between Crohn’s and ulcerative colitis. Colorectal Disease, 13(11), 1230–1235. doi:10.1111/j.1463-1318.2011.02639.x.

    Article  CAS  PubMed  Google Scholar 

  107. Jess, T., Simonsen, J., Jorgensen, K. T., Pedersen, B. V., Nielsen, N. M., & Frisch, M. (2012). Decreasing risk of colorectal cancer in patients with inflammatory bowel disease over 30 years. Gastroenterology, 143(2), 375–381. doi:10.1053/j.gastro.2012.04.016.

    Article  PubMed  Google Scholar 

  108. Castano-Milla, C., Chaparro, M., Gisbert, J. P., Castaño-Milla, C., Chaparro, M., Gisbert, J. P., Castano-Milla, C., Chaparro, M., Gisbert, J. P., Castaño-Milla, C., et al. (2014). Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Alimentary Pharmacology & Therapeutics, 39(7), 645–659. doi:10.1111/apt.12651.

    Article  CAS  Google Scholar 

  109. Grainge, M. J., West, J., & Card, T. R. (2010). Venous thromboembolism during active disease and remission in inflammatory bowel disease: a cohort study. Lancet, 375(9715), 657–663. doi:10.1016/S0140-6736(09)61963-2.

    Article  PubMed  Google Scholar 

  110. Miehsler, W., Reinisch, W., Valic, E., Osterode, W., Tillinger, W., Feichtenschlager, T., et al. (2004). Is inflammatory bowel disease an independent and disease specific risk factor for thromboembolism? Gut, 53(4), 542–548. doi:10.1136/gut.2003.025411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schrör, K. (2011). Pharmacology and cellular/molecular mechanisms of action of aspirin and non-aspirin NSAIDs in colorectal cancer. Best Practice & Research. Clinical Gastroenterology, 25(4–5), 473–484. doi:10.1016/j.bpg.2011.10.016.

    Article  CAS  Google Scholar 

  112. Wang, D., & Dubois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781–788. doi:10.1038/onc.2009.421.

    Article  CAS  PubMed  Google Scholar 

  113. Elzagheid, A., Emaetig, F., Alkikhia, L., Buhmeida, A., Syrjanen, K., El-Faitori, O., et al. (2013). High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. Anticancer Research, 33(8), 3137–3143 doi:33/8/3137 [pii].

    PubMed  Google Scholar 

  114. Chan, A. T., Ogino, S., & Fuchs, C. S. (2007). Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. The New England Journal of Medicine, 356(21), 2131–2142. doi:10.1056/NEJMoa067208.

    Article  CAS  PubMed  Google Scholar 

  115. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313(5795), 1960–1964. doi:10.1126/science.1129139.

    Article  CAS  PubMed  Google Scholar 

  116. Mlecnik, B., Bindea, G., Kirilovsky, A., Angell, H. K., Obenauf, A. C., Tosolini, M., et al. (2016). The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Science Translational Medicine, 8(327), 327ra26. doi:10.1126/scitranslmed.aad6352.

    Article  PubMed  CAS  Google Scholar 

  117. Smyrk, T., Watson, P., Kaul, K., & Lynch, H. (2001). Tumor infiltrating lymphocytes are a marker for microsatelite instability in colorectal carcinoma. Cancer, 91(March), 2417–2422. doi:10.1002/1097-0142(20010615)91.

    Article  CAS  PubMed  Google Scholar 

  118. Llosa, N. J., Cruise, M., Tam, A., Wicks, E. C., Hechenbleikner, E. M., Taube, J. M., et al. (2015). The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discovery, 5(1), 43–51. doi:10.1158/2159-8290.CD-14-0863.

    Article  CAS  PubMed  Google Scholar 

  119. Galon, J., Mlecnik, B., Bindea, G., Angell, H. K., Berger, A., Lagorce, C., et al. (2014). Towards the introduction of the “Immunoscore” in the classification of malignant tumours. The Journal of Pathology, 232(2), 199–209. doi:10.1002/path.4287.

    Article  CAS  PubMed  Google Scholar 

  120. Templeton, A. J., McNamara, M. G., Šeruga, B., Vera-Badillo, F. E., Aneja, P., Ocaña, A., et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Journal of the National Cancer Institute, 106(6). doi:10.1093/jnci/dju124.

  121. Li, M.-X., Liu, X.-M., Zhang, X.-F., Zhang, J.-F., Wang, W.-L., Zhu, Y., et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. International journal of cancer. J Int Cancer, 134(10), 2403–2413. doi:10.1002/ijc.28536.

    Article  CAS  Google Scholar 

  122. Tan, D., Fu, Y., Su, Q., & Wang, H. (2016). Prognostic role of platelet-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Medicine, 95(24), e3837. doi:10.1097/MD.0000000000003837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. You, J., Zhu, G.-Q., Xie, L., Liu, W.-Y., Shi, L., Wang, O.-C., et al. (2016). Preoperative platelet to lymphocyte ratio is a valuable prognostic biomarker in patients with colorectal cancer. Oncotarget, 7(18). doi:10.18632/oncotarget.8334.

  124. Szkandera, J., Pichler, M., Absenger, G., Stotz, M., Arminger, F., Weissmueller, M., et al. (2014). The elevated preoperative platelet to lymphocyte ratio predicts decreased time to recurrence in colon cancer patients. American Journal of Surgery, 208(2), 210–214. doi:10.1016/j.amjsurg.2013.10.030.

    Article  PubMed  Google Scholar 

  125. You, J., Zhang, H., Shen, Y., Chen, C., Liu, W., Zheng, M., et al. (2017). Impact of platelet to lymphocyte ratio and metabolic syndrome on the prognosis of colorectal cancer patients. OncoTargets Ther, 10, 2199–2208. doi:10.2147/OTT.S132621.

    Article  Google Scholar 

  126. Hamada, T., Cao, Y., Qian, Z. R., Masugi, Y., Nowak, J. A., Yang, J., et al. (2017). Aspirin use and colorectal cancer survival According to tumor CD274 (programmed cell death 1 ligand 1) expression status. Journal of Clinical Oncology, 274(16), JCO.2016.70.754. doi:10.1200/JCO.2016.70.7547.

    Google Scholar 

  127. Zelenay, S., Van Der Veen, A. G., Böttcher, J. P., Snelgrove, K. J., Rogers, N., Acton, S. E., et al. (2015). Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 162(6), 1257–1270. doi:10.1016/j.cell.2015.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Becht, E., Elien De Reyni Es, A., Giraldo, N. A., Pilati, C., En Edicte Buttard, B., Lacroix, L., … Fridman, W. H. (n.d.). Personalized medicine and imaging immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res, 1–10. doi:10.1158/1078–0432.CCR-15-2879

  129. Song, N., Pogue-Geile, K. L., Gavin, P. G., Yothers, G., Kim, S. R., Johnson, N. L., et al. (2016). Clinical outcome from oxaliplatin treatment in stage II/III colon cancer according to intrinsic subtypes. JAMA Oncology, 2(9), 1162. doi:10.1001/jamaoncol.2016.2314.

    Article  PubMed  Google Scholar 

  130. Trinh, A., Trumpi, K., de Sousa e Melo, F., Wang, X., de Jong, J. H., Fessler, E., et al. (2016). Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin Cancer Res, clincanres.0680.2016. doi:10.1158/1078–0432.CCR-16-0680.

  131. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659. doi:10.1056/NEJM198612253152606.

    Article  CAS  PubMed  Google Scholar 

  132. Ding, J., & Tredget, E. E. (2015). The role of chemokines in fibrotic wound healing. Advances in Wound Care, 4(11), 673–686. doi:10.1089/wound.2014.0550.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rybinski, B., Franco-Barraza, J., & Cukierman, E. (2014). The wound healing, chronic fibrosis, and cancer progression triad. Physiological Genomics, 46(7), 223–244. doi:10.1152/physiolgenomics.00158.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews. Cancer, 12(3), 170–180. doi:10.1038/nrc3217.

    Article  CAS  PubMed  Google Scholar 

  135. Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., et al. (2010). Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology, 184(7), 3964–3977. doi:10.4049/jimmunol.0903356.

    Article  CAS  Google Scholar 

  136. Willenborg, S., Lucas, T., Van Loo, G., Knipper, J. A., Krieg, T., Haase, I., et al. (2012). CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood, 120(3), 613–625. doi:10.1182/blood-2012-01-403386.

    Article  CAS  PubMed  Google Scholar 

  137. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229(2), 176–185. doi:10.1002/path.4133.

    Article  CAS  PubMed  Google Scholar 

  138. Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593–604. doi:10.1016/j.immuni.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  139. Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314–321. doi:10.1038/nature07039.

    Article  CAS  PubMed  Google Scholar 

  140. Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1), 9–18. doi:10.1016/j.clindermatol.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  141. Kalluri, R., & Weinberg, R. a. (2009). Review series. The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119(6), 1420–1428. doi:10.1172/JCI39104.1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598. doi:10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  143. Calon, A., Lonardo, E., Berenguer-Llergo, A., Espinet, E., Hernando-Momblona, X., Iglesias, M., et al. (2015). Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genetics, 47(4), 320–329. doi:10.1038/ng.3225.

    Article  CAS  PubMed  Google Scholar 

  144. Isella, C., Terrasi, A., Erika Bellomo, S., Petti, C., Galatola, G., Muratore, A., et al. (2015). Stromal contribution to the colorectal cancer transcriptome. Nature Publishing Group, 47(4). doi:10.1038/ng.3224.

  145. Dunne, P. D., McArt, D. G., Bradley, C. A., O’Reilly, P. G., Barrett, H. L., Cummins, R., et al. (2016). Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clinical Cancer Research, 22(16), 4095–4104. doi:10.1158/1078-0432.CCR-16-0032.

    Article  CAS  PubMed  Google Scholar 

  146. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature reviews. Cancer, 2(8), 563–572. doi:10.1038/nrc865.

    CAS  PubMed  Google Scholar 

  147. Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2(12), 1091–1099. doi:10.1158/2159-8290.CD-12-0329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fidler, I. J. (1970). Metastasis: quantitative analysis of distribution and fate of tumour emboli labeled with 125I-5-iodo-2[prime]-deoxyuridine. Journal of the National Cancer Institute, 45, 773–782.

    CAS  PubMed  Google Scholar 

  149. Date, K., Hall, J., Greenman, J., Maraveyas, A., & Madden, L. A. (2013). Tumour and microparticle tissue factor expression and cancer thrombosis. Thrombosis Research, 131(2), 109–115. doi:10.1016/j.thromres.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

  150. Labelle, M., Begum, S., & Hynes, R. O. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590. doi:10.1016/j.ccr.2011.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, Y., Sun, Y., Li, D., Zhang, L., Wang, K., Zuo, Y., et al. (2013). Platelet P2Y12 is involved in murine pulmonary metastasis. PloS One, 8(11), 1–12. doi:10.1371/journal.pone.0080780.

    Google Scholar 

  152. Schumacher, D., Strilic, B., Sivaraj, K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell Transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137. doi:10.1016/j.ccr.2013.05.008.

    Article  CAS  PubMed  Google Scholar 

  153. Stegner, D., Dütting, S., & Nieswandt, B. (2014). Mechanistic explanation for platelet contribution to cancer metastasis. Thrombosis Research, 133(SUPPL. 2), S149–S157. doi:10.1016/S0049-3848(14)50025-4.

    Article  CAS  PubMed  Google Scholar 

  154. Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., Kenneth, V., & Honn, K. V. (2014). Platelets and cancer: A casual or causal relationship: Revisited. Cancer and Metastasis Reviews, 33(1), 231–269. doi:10.1007/s10555-014-9498-0

  155. Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 28(7), 299–307. doi:10.1016/j.it.2007.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Massberg, S., Konrad, I., Schürzinger, K., Lorenz, M., Schneider, S., Zohlnhoefer, D., et al. (2006). Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo. The Journal of Experimental Medicine, 203(5), 1221–1233. doi:10.1084/jem.20051772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stellos, K., Rahmann, A., Kilias, A., Ruf, M., Sopova, K., Stamatelopoulos, K., et al. (2012). Expression of platelet-bound stromal cell-derived factor-1 in patients with non-valvular atrial fibrillation and ischemic heart disease. Journal of Thrombosis and Haemostasis, 10(1), 49–55. doi:10.1111/j.1538-7836.2011.04547.x.

    Article  CAS  PubMed  Google Scholar 

  158. Labelle, M., Begum, S., & Hynes, R. O. (2014). Platelets guide the formation of early metastatic niches. Proceedings of the National Academy of Sciences of the United States of America, 111(30), E3053–E3061. doi:10.1073/pnas.1411082111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zucchella, M., Dezza, L., Pacchiarini, L., Meloni, F., Tacconi, F., Bonomi, E., et al. (1989). Human tumor cells cultured “in vitro” activate platelet function by producing ADP or thrombin. Haematologica, 74(6), 541–545.

    CAS  PubMed  Google Scholar 

  160. Bambace, N. M., & Holmes, C. E. (2011). The platelet contribution to cancer progression. Journal of Thrombosis and Haemostasis, 9(2), 237–249. doi:10.1111/j.1538-7836.2010.04131.x.

    Article  CAS  PubMed  Google Scholar 

  161. Boukerche, H., Berthier-Vergnes, O., Penin, F., Tabone, E., Lizard, G., Bailly, M., & Mcgregor, J. (1994). Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. British Journal of Haematology, 87, 763–772. doi:10.1111/j.1365-2141.1994.tb06736.x.

    Article  CAS  PubMed  Google Scholar 

  162. Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine, 1276–1312. doi:10.1101/gad.1653708.revealing.

    Google Scholar 

  163. Cao, Y. (2013). Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends in Molecular Medicine, 19(8), 460–473. doi:10.1016/j.molmed.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  164. Yu, J., Ustach, C., & Kim, H.-R. C. (2003). Platelet-derived growth factor signaling and human cancer. Journal of Biochemistry and Molecular Biology, 36(1), 49–59 Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12542975&retmode=ref&cmd=prlinks%5Cnpapers3://publication/uuid/4806B08A-0F37-4D04-A0B9-801A7EDAE724.

    CAS  PubMed  Google Scholar 

  165. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M., & Sporn, M. B. (1983). Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. The Journal of Biological Chemistry, 258(11), 7155–7160 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6602130.

    CAS  PubMed  Google Scholar 

  166. Grainger, D. J., Wakefield, L., Bethell, H. W., Farndale, R. W., & Metcalfe, J. C. (1995). Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nature Medicine, 1(9), 932–937.

    Article  CAS  PubMed  Google Scholar 

  167. Grainger, D. J., Kemp, P. R., Metcalfe, J. C., Liu, A. C., Lawn, R. M., Williams, N. R., et al. (1995). The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nature Medicine, 1(1), 74–79.

    Article  CAS  PubMed  Google Scholar 

  168. Grainger, D. J., Kemp, P. R., Liu, A. C., Lawn, R. M., & Metcalfe, J. C. (1994). Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature, 370(6489), 460–462. doi:10.1038/370460a0.

    Article  CAS  PubMed  Google Scholar 

  169. Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., & Kombrinck, K. W. (2005). Platelets and fibrin ( ogen ) increase metastatic potential by impeding natural killer cell – mediated elimination of tumor cells. Blood Journal, 105(1), 178–185. doi:10.1182/blood-2004-06-2272.Supported.

    Article  CAS  Google Scholar 

  170. Nieswandt, B., Hafner, M., Echtenacher, B., & Männel, D. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer research, 1295–1300 Retrieved from http://cancerres.aacrjournals.org/content/59/6/1295.short.

  171. Kopp, H.-G. G., Placke, T., & Salih, H. R. (2009). Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Research, 69(19), 7775–7783. doi:10.1158/0008-5472.CAN-09-2123.

    Article  CAS  PubMed  Google Scholar 

  172. Placke, T., Örgel, M., Schaller, M., Jung, G., Rammensee, H. G., Kopp, H. G., & Salih, H. R. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448. doi:10.1158/0008-5472.CAN-11-1872.

    Article  CAS  PubMed  Google Scholar 

  173. Placke, T., Kopp, H. G., & Salih, H. R. (2011). Modulation of natural killer cell anti-tumor reactivity by platelets. Journal of Innate Immunity, 3(4), 374–382. doi:10.1159/000323936.

    Article  CAS  PubMed  Google Scholar 

  174. Gabrilovich, D. I. (2017). Myeloid-derived suppressor cells. Cancer Immunology Research, 5(1), 3–8. doi:10.1158/2326-6066.CIR-16-0297.

    Article  CAS  PubMed  Google Scholar 

  175. Gabrilovich, D. I., Ostrand, R. S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature reviews. Immunology, 12(4), 253–268. doi:10.1038/nri3175.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. The Journal of Clinical Investigation, 122(3), 787–795. doi:10.1172/JCI59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shaul, M. E., Levy, L., Sun, J., Mishalian, I., Singhal, S., Kapoor, V., et al. (2016). Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology, 5(11), e1232221. doi:10.1080/2162402X.2016.1232221.

    Article  PubMed  CAS  Google Scholar 

  178. Sagiv, J. Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., et al. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports, 10(4), 562–574. doi:10.1016/j.celrep.2014.12.039.

    Article  CAS  PubMed  Google Scholar 

  179. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194. doi:10.1016/j.ccr.2009.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hron, G., Kollars, M., Weber, H., Sagaster, V., Quehenberger, P., Eichinger, S., et al. (2007). Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thrombosis and Haemostasis, 97(1), 119–123. doi:10.1160/TH06.

    CAS  PubMed  Google Scholar 

  181. Manly, D. A., Wang, J., Glover, S. L., Kasthuri, R., Liebman, H. A., Key, N. S., & Mackman, N. (2010). Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thrombosis Research, 125(6), 511–512. doi:10.1016/j.thromres.2009.09.019.

    Article  CAS  PubMed  Google Scholar 

  182. Geddings, J. E., & Mackman, N. (2013). Tumor-derived tissue factor—positive microparticles and venous thrombosis in cancer patients. Blood, 122(11), 1873–1880. doi:10.1182/blood-2013-04-460139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McAllister, S. S., & Weinberg, R. A. (2014). The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 16(8), 717–727. doi:10.1038/ncb3015.

    Article  CAS  PubMed  Google Scholar 

  184. Berckmans, R. J., Nieuwland, R., Böing, A. N., Romijn, F. P. H. T. M., Hack, C. E., & Sturk, A. (2001). Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thrombosis and Haemostasis, 85(4), 639–646.

    CAS  PubMed  Google Scholar 

  185. Willeit, P., Zampetaki, A., Dudek, K., Kaudewitz, D., King, A., Kirkby, N. S., et al. (2013). Circulating microRNAs as novel biomarkers for platelet activation. Circulation Research, 112(4), 595–600. doi:10.1161/CIRCRESAHA.111.300539.

    Article  CAS  PubMed  Google Scholar 

  186. Laffont, B., Corduan, A., Rousseau, M., Duchez, A. C., Lee, C. H. C., Boilard, E., & Provost, P. (2016). Platelet microparticles reprogram macrophage gene expression and function. Thrombosis and Haemostasis, 115(2), 311–323. doi:10.1160/TH15-05-0389.

    Article  PubMed  Google Scholar 

  187. Laffont, B., Corduan, A., Plé, H., Duchez, A.-C., Cloutier, N., Boilard, E., & Provost, P. (2013). Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood, 122(2), 253–261. doi:10.1182/blood-2013-03-492801.

    Article  CAS  PubMed  Google Scholar 

  188. Fessler, E., Jansen, M., De Sousa E Melo, F., Zhao, L., Prasetyanti, P. R., Rodermond, H., et al. (2016). A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene, 35(46), 6026–6037. doi:10.1038/onc.2016.134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cantini, L., Isella, C., Petti, C., Picco, G., Chiola, S., Ficarra, E., et al. (2015). MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes. Nature Communications, 6, 8878. doi:10.1038/ncomms9878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Londin, E. R., Hatzimichael, E., Loher, P., Edelstein, L., Shaw, C., Delgrosso, K., Rigoutsos, I. (2014). The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biology Direct, 9(1), 3. doi:10.1186/1745-6150-9-3

  191. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Moore, H. F. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45(6), 580–585. doi:10.1038/ng.2653

  192. González-Cortés, C., Diez-Tascón, C., Guerra-Laso, J. M., González-Cocaño, M. C., & Rivero-Lezcano, O. M. (2012). Nonchemotactic influence of CXCL7 on human phagocytes. Modulation of antimicrobial activity against L. pneumophila. Immunobiology, 217(4), 394–401. doi:10.1016/j.imbio.2011.10.015

Download references

Acknowledgements

Grant and other support: Boone Pickens Distinguished Chair for Early Prevention of Cancer, Duncan Family Institute, Colorectal Cancer Moon Shot, P30CA016672-41, 1R01CA187238-01, 5R01CA172670-03 and 1R01CA184843-01A1 and CA177909.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Menter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, M., Roszik, J., Kanikarla-Marie, P. et al. The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Rev 36, 273–288 (2017). https://doi.org/10.1007/s10555-017-9678-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9678-9

Keywords

Navigation