Skip to main content
Log in

Barcode index numbers expedite quarantine inspections and aid the interception of nonindigenous mealybugs (Pseudococcidae)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Quarantine interception of invasive and nonindigenous insect pests at ports of entry is often impeded by the lack of robust identification methods. Because of their inconspicuous morphology and wax-covered bodies, mealybugs present a particular challenge. The present study employs DNA barcoding (658 base pairs near the 5′-terminus of the cytochrome c oxidase I gene) as a tool for their discrimination because of its proven utility in discriminating closely related species. The current study considers DNA barcodes from 914 mealybugs (Pseudococcidae) collected in 31 countries. Most (836) of these specimens were assigned to a named species, but others were only identified to a genus or family. Their sequence analysis revealed substantial COI diversity with maximum divergences reaching 27%. While the identified specimens included representatives of 62 species, the Barcode Index Number (BIN) system assigned the 914 sequences to 120 BINs, nearly doubling the putative species count and revealing cases of potential cryptic species and misidentifications. With a single exception, intraspecific divergence values for named species were less than their nearest-neighbor distances, but 13 species showed BIN splits and two species were merged in a BIN. High genetic diversity and presence of cryptic species in the known mealybugs, revealed in this study, underscore the limitations of morphology and potential utility of BINs for the rapid recognition of nonindigenous insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-Rabou S, Shalaby H, Germain JF, Ris N, Kreiter P, Malausa T (2012) Identification of mealybug pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach. Bull Entomol Res 102:515–523

    PubMed  CAS  Google Scholar 

  • Ahmed MZ, He RR, Wu MT et al (2015a) First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in China and genetic record for its recent invasion in Asia and Africa. Fla Entomol 98:1157–1162

    CAS  Google Scholar 

  • Ahmed MZ, Ma J, Qiu BL et al (2015b) Genetic record for a recent invasion of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Asia. Environ Entomol 44:907–918

    PubMed  Google Scholar 

  • Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360:1813–1823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong KF, Cameron CM, Frampton ER (1997) Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bull Entomol Res 87:111–118

    CAS  Google Scholar 

  • Ashfaq M, Hebert PDN (2016) DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests. Genome 59:933–945

    PubMed  CAS  Google Scholar 

  • Ashfaq M, Noor AR, Mansoor S (2010) DNA-based characterization of an invasive mealybug (Hemiptera: Pseudococcidae) species damaging cotton in Pakistan. Appl Entomol Zool 45:395–404

    CAS  Google Scholar 

  • Ashfaq M, Ara J, Noor AR, Hebert PDN, Mansoor S (2011) Molecular phylogenetic analysis of a scale insect (Drosicha mangiferae; Hemiptera: Monophlebidae) infesting mango orchards in Pakistan. Eur J Entomol 108:553–559

    Google Scholar 

  • Ashfaq M, Hebert PDN, Mirza MS et al (2014) DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan. PLoS ONE 9:e104485

    PubMed  PubMed Central  Google Scholar 

  • Ashfaq M, Akhtar S, Rafi MA, Mansoor S, Hebert PDN (2017) Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan. PLoS ONE 12:e0174749

    PubMed  PubMed Central  Google Scholar 

  • Bacon SJ, Bacher S, Aebi A (2012) Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS ONE 7:e47689

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barco A, Raupach MJ, Laakmann S, Neumann H, Knebelsberger T (2016) Identification of North Sea molluscs with DNA barcoding. Mol Ecol Resour 16:288–297

    PubMed  CAS  Google Scholar 

  • Beltrà A, Soto A, Malausa T (2012) Molecular and morphological characterization of Pseudococcidae surveyed on crops and ornamental plants in Spain. Bull Entomol Res 102:165–172

    PubMed  Google Scholar 

  • Beuning LL, Murphy P, Wu E, Batchelor TA, Morris BAM (2014) Molecular-based approach to the differentiation of mealybug (Hemiptera: Pseudococcidae) species. J Econ Entomol 92:463–472

    Google Scholar 

  • Chellappan M, Lawrence L, Indhu P, Cherian T, Anitha S, Jimcymaria T (2013) Host range and distribution pattern of papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) on selected Euphorbiaceae hosts in Kerala. J Trop Agric 51:51–59

    Google Scholar 

  • Correa MCG, Germain JF, Malausa T, Zaviezo T (2012) Molecular and morphological characterization of mealybugs (Hemiptera: Pseudococcidae) from Chilean vineyards. Bull Entomol Res 102:524–530

    PubMed  CAS  Google Scholar 

  • Daane KM, Middleton MC, Sforza R et al (2011) Development of a multiplex PCR for identification of vineyard mealybugs. Environ Entomol 40:1595–1603

    PubMed  CAS  Google Scholar 

  • Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765

    Google Scholar 

  • Deng J, Yu F, Zhang T et al (2012) DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: Coccidae) from China. Mol Ecol Resour 12:791–796

    PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed  PubMed Central  Google Scholar 

  • García Morales M, Denno B, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2016) ScaleNet: a literature-based model of scale insect biology and systematics. http://www.scalenet.info. Accessed 10 Aug 2016

  • Gavrilov-Zimin IA (2016) Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae). Comp Cytogenet 10:587–601

    PubMed  PubMed Central  Google Scholar 

  • Goergen G, Tamo M, Kyofa-Boamah ME, Bokonon-Ganta AH, Neuenschwander P (2011) Papaya mealybug: a new invading pest in West Africa. Biocontrol News Inf 32:9N–16N

    Google Scholar 

  • Gullan PJ (2000) Identification of the immature instars of mealybugs (Hemiptera: Pseudococcidae) found on citrus in Australia. Aust J Entomol 39:160–166

    Google Scholar 

  • Gullan PJ, Kaydan MB, Hardy NB (2010) Molecular phylogeny and species recognition in the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae). Syst Entomol 35:329–339

    Google Scholar 

  • Gwiazdowski R, Vea IM, Andersen JC, Normark BB (2011) Discovery of cryptic species among North American pine-feeding Chionaspis scale insects (Hemiptera: Diaspididae). Biol J Linn Soc 104:47–62

    Google Scholar 

  • He YB, Wan XW, Liu YH, Sun GM, Zhan RL (2012) Mitochondrial COI from Dysmicoccus brevipes (Hemiptera: Pseudococcidae) suggests cryptic lineage and pinpoints the source of the introduction to China. Fla Entomol 95:183–191

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, Zakharov EV et al (2016) Counting animal species with DNA barcodes: Canadian insects. Philos Trans R Soc Lond B Biol Sci 371:20150333

    PubMed  PubMed Central  Google Scholar 

  • Hendrich L, Moriniere J, Haszprunar G et al (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour 15:795–818

    PubMed  CAS  Google Scholar 

  • Hodgson CJ, Abbas G, Arif MJ, Saeed S, Karar H (2008) Phenacoccus solenopsis Tinsley (Sternorrhyncha: Coccoidea: Pseudococcidae), an invasive mealybug damaging cotton in Pakistan and India, with a discussion on seasonal morphological variation. Zootaxa 1913:1–35

    Google Scholar 

  • Ibrahim SS, Moharum FA, Abd El-Ghany NM (2015) The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new insect pest on tomato plants in Egypt. J Plant Prot Res 55:48–51

    Google Scholar 

  • Iftikhar R, Ashfaq M, Rasool A, Hebert PDN (2016) DNA barcode analysis of thrips (Thysanoptera) diversity in Pakistan reveals cryptic species complexes. PLoS ONE 11:e0146014

    PubMed  PubMed Central  Google Scholar 

  • Johnson T, Giliomee JH (2013) Practical problems and their solutions in studying the biology of the mealybug Paracoccus burnerae (Brain) (Hemiptera: Pseudococcidae). Afr J Biotechnol 12:3609–3614

    Google Scholar 

  • Kekkonen M, Hebert PDN (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol Ecol Res 14:706–715

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Koch FH, Yemshanov D, Haack RA, Magarey RD (2014) Using a network model to assess risk of forest pest spread via recreational travel. PLoS ONE 9:e102105

    PubMed  PubMed Central  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    PubMed  CAS  Google Scholar 

  • Leys M, Keller I, Rasanen K, Gattolliat J-L, Robinson CT (2016) Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evol Biol 16:77

    PubMed  PubMed Central  Google Scholar 

  • Malausa T, Fenis A, Warot S et al (2011) DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). J Appl Entomol 135:142–155

    CAS  Google Scholar 

  • Mastrangelo T, Paulo DF, Bergamo LW et al (2014) Detection and genetic diversity of a Heliothine invader (Lepidoptera: Noctuidae) from north and northeast of Brazil. J Econ Entomol 107:970–980

    PubMed  CAS  Google Scholar 

  • McKenzie HL (1967) Mealybugs of California with taxonomy, biology, and control of North American species (Homoptera: Coccoidea: Pseudococcidae). University of California Press, Berkeley, p 41

    Google Scholar 

  • Mendel Z, Watson GW, Protasov A, Spodek M (2016) First record of the papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Coccomorpha: Pseudococcidae), in the Western Palaearctic. EPPO Bull. doi:10.1111/epp.12321

    Article  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    PubMed  PubMed Central  Google Scholar 

  • Mutanen M, Kekkonen M, Prosser SWJ, Hebert PDN, Kaila L (2015) One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Mol Ecol Resour 15:967–984

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nagoshi RN, Brambila J, Meagher RL (2011) Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci. doi:10.1673/031.011.15401

    Article  PubMed  PubMed Central  Google Scholar 

  • Park DS, Suh SJ, Hebert PDN, Oh HW, Hong KJ (2011) DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bull Entomol Res 101:429–434

    PubMed  CAS  Google Scholar 

  • Pieterse W, Muller DL, Jansen van Vuuren B (2010) A molecular identification approach for five species of mealybug (Hemiptera: Pseudococcidae) on citrus fruit exported from South Africa. Afr Entomol 18:23–28

    Google Scholar 

  • Qin ZQ, Wu JH, Ren SX, Wan FH (2010) Risk analysis of the alien invasive gray pineapple mealybug (Dysmicoccus neobrevipes Beardsley) in China. Sci Agric Sin 43:626–631

    Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8:e66213

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  • Rung SJ, Scheffer GE, Miller D (2008) Molecular identification of two closely related species of mealybugs of the genus Planococcus (Homoptera: Pseudococcidae). Ann Entomol Soc Am 101:525–532

    CAS  Google Scholar 

  • Saccaggi DL, Krüger K, Pietersen G (2008) A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae). Bull Entomol Res 98:27–33

    PubMed  CAS  Google Scholar 

  • Sagarra LA, Peterkirr DD (1999) Invasion of the Caribbean by the hibiscus mealybug, Maconellicoccus hirsutus Green [Homoptera: Pseudococcidae]. Phytoprotection 80:103–113

    Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tang FD (1992) The Pseudococcidae of China (Homoptera: Coccinea of Insects). Chinese Agricultural Science Technology Press, Beijing

    Google Scholar 

  • Telfer AC, Young MR, Quinn J et al (2015) Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J 30:2015

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wan FH, Yang NW (2016) Invasion and management of agricultural alien insects in China. Annu Rev Entomol 61:77–98

    PubMed  CAS  Google Scholar 

  • Wang X-B, Zhang J-T, Deng J, Zhou Q-S, Zhang YZ, Wu S-A (2016) DNA barcoding of mealybugs (Hemiptera: Coccoidea: Pseudococcidae) from mainland China. Ann Entomol Soc Am. doi:10.1093/aesa/saw009

    Article  Google Scholar 

  • Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398

    Google Scholar 

  • Williams DJ (2004) Mealybugs of Southern Asia. The Natural History Museum, London, and Southdene, Kuala Lumpur

  • Wu FZ, Ma J, Hu XN, Zeng L (2015) Homology difference analysis of invasive mealybug species Phenacoccus solenopsis Tinsley in Southern China with COI gene sequence variability. Bull Entomol Res 105:32–39

    PubMed  CAS  Google Scholar 

  • You S, Liu J, Huang D et al (2013) A review of the mealybug Oracella acuta: invasion and management in China and potential incursions into other countries. For Ecol Manag 305:96–102

    Google Scholar 

  • Zeddies J, Schaab RP, Neuenschwander P, Herren HR (2001) Economics of biological control of cassava mealybug in Africa. Agric Econ 24:209–219

    Google Scholar 

Download references

Acknowledgements

This research was supported by Chinese National Key Research and Development Program for Bio-safety (2016YFC1201201). Many thanks to Dr. Suh Soo-jung (National Plant Quarantine Service, Busan 600-016, Korea), Dr. Cai Bo (Hainan Inspection and Quarantine Technology Center), Mr. Deng Yu-liang (Xishuangbanna Inspection and Quarantine Technology Center) and Mr. Bai Yong-hua (Mohan Exit and Entry Inspection and Quarantine Bureau) for their assistance in sample collection. David Plotkin (University of Florida) provided useful suggestions during phylogenetic analysis. This is a contribution from the “Food from Thought” research program enabled by an award from the Canada First Research Excellence Fund to the University of Guelph.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Nan Hu or Jun Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, JM., Ashfaq, M., Hu, XN. et al. Barcode index numbers expedite quarantine inspections and aid the interception of nonindigenous mealybugs (Pseudococcidae). Biol Invasions 20, 449–460 (2018). https://doi.org/10.1007/s10530-017-1546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1546-6

Keywords

Navigation