Skip to main content

Advertisement

Log in

Real-time ensemble based face recognition system for NAO humanoids using local binary pattern

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

NAO humanoid robots are being used in many human-robot interaction applications. One of the important existing challenges is developing an accurate real-time face recognition system which does not require to have high computational cost. In this research work a real-time face recognition system by using block processing of local binary patterns of the face images captured by NAO humanoid is proposed. Majority voting and best score ensemble approaches have been used in order to boost the recognition results obtained in different colour channels of YUV colour space, which is a default colour space provided by the camera of NAO humanoid. The proposed method has been adopted on NAO humanoid and tested under real-world conditions. The recognition results were boosted in the real-time scenario by employing majority voting on the intra-sequence decisions with window size of 5. The experimental results are showing that the proposed face recognition algorithm overcomes the conventional and state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy, R. R., Nomura, T., Billard, A., & Burke, J. L. (2010). Human–robot interaction. IEEE Robotics & Automation Magazine, 17(2), 85–89.

    Article  Google Scholar 

  2. Xue, Y. (2016). Recent development in analog computation: A brief overview. Analog Integrated Circuits and Signal Processing, 86(2), 181–187.

    Article  Google Scholar 

  3. Anbarjafari, G., & Aabloo, A. (2014). Expression recognition by using facial and vocal expressions. In V&L Net 2014, p. 103.

  4. Modares, H., Ranatunga, I., AlQaudi, B., Lewis, F. L., & Popa, D. O. (2017). Intelligent human–robot interaction systems using reinforcement learning and neural networks. In Y. Wang & F. Zhang (Eds.), Trends in control and decision-making for human–robot collaboration systems (pp. 153–176). Berlin: Springer.

  5. Noroozi, F., Sapiński, T., Kamińska, D., & Anbarjafari, G. (2017). Vocal-based emotion recognition using random forests and decision tree. International Journal of Speech Technology, 20(2), 239–246.

    Article  Google Scholar 

  6. Ding, C., & Tao, D. (2016). A comprehensive survey on pose-invariant face recognition. ACM Transactions on Intelligent Systems and Technology (TIST), 7(3), 37.

    Google Scholar 

  7. Anbarjafari, G. (2013). Face recognition using color local binary pattern from mutually independent color channels. EURASIP Journal on Image and Video Processing, 2013(1), 6.

    Article  Google Scholar 

  8. Barreto, J., Menezes, P., Dias, J. (2004). Human–robot interaction based on haar-like features and eigenfaces. In Robotics and automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on (vol. 2, pp. 1888–1893). IEEE.

  9. Ahmed, M. T., Amin, S. H. M. (2015). Comparison of face recognition algorithms for human–robot interactions. Jurnal Teknologi, 72(2), 1–6.

    Article  Google Scholar 

  10. Yan, H., Ang, M. H, Jr., & Poo, A. N. (2014). A survey on perception methods for human-robot interaction in social robots. International Journal of Social Robotics, 6(1), 85–119.

    Article  Google Scholar 

  11. Lu, J., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003). Face recognition using LDA-based algorithms. IEEE Transactions on Neural Networks, 14(1), 195–200.

    Article  Google Scholar 

  12. Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G. (2016). Convolutional neural network super resolution for face recognition in surveillance monitoring. In International conference on articulated motion and deformable objects (pp. 175–184). Springer.

  13. Anbarjafari, G. (2013). Face recognition using color local binary pattern from mutually independent color channels. EURASIP Journal on Image and Video Processing, 2013(1), 1–11.

    Article  Google Scholar 

  14. Zhuang, L., Chan, T.-H., Yang, A. Y., Sastry, S. S., & Ma, Y. (2015). Sparse illumination learning and transfer for single-sample face recognition with image corruption and misalignment. International Journal of Computer Vision, 114(2–3), 272–287.

    Article  MathSciNet  Google Scholar 

  15. Ahonen, T., Hadid, A., & Pietikäinen, M. (2004). Face recognition with local binary patterns. In Computer Vision—ECCV 2004 (pp. 469–481). Springer.

  16. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  MATH  Google Scholar 

  17. Zhao, Y., Jia, W., Rong-Xiang, H., & Min, H. (2013). Completed robust local binary pattern for texture classification. Neurocomputing, 106, 68–76.

    Article  Google Scholar 

  18. Liu, L., Lao, S., Fieguth, P. W., Guo, Y., Wang, X., & Pietikäinen, M. (2016). Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368–1381.

    Article  MathSciNet  Google Scholar 

  19. Liu, G.-H., Zhang, L., Hou, Y.-K., Li, Z.-Y., & Yang, J.-Y. (2010). Image retrieval based on multi-texton histogram. Pattern Recognition, 43(7), 2380–2389.

    Article  MATH  Google Scholar 

  20. Cyril Höschl, I. V., & Flusser, J. (2016). Robust histogram-based image retrieval. Pattern Recognition Letters, 69, 72–81.

    Article  Google Scholar 

  21. Beheshti, I., Demirel, H., Farokhian, F., Yang, C., Matsuda, H., Initiative, A. D. N., et al. (2016). Structural mri-based detection of Alzheimer’s disease using feature ranking and classification error. Computer Methods and Programs in Biomedicine, 137, 177–193.

    Article  Google Scholar 

  22. Shan, C., Gong, S., & McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing, 27(6), 803–816.

    Article  Google Scholar 

  23. Cament, L. A., Galdames, F. J., Bowyer, K. W., & Perez, C. A. (2015). Face recognition under pose variation with active shape model to adjust gabor filter kernels and to correct feature extraction location. In Automatic face and gesture recognition (FG), 2015 11th IEEE international conference and workshops on (vol. 1, pp. 1–6). IEEE.

  24. Sun, N., Zheng, W., Sun, C., Zou, C., & Zhao, L. (2006). Gender classification based on boosting local binary pattern. In Advances in Neural Networks—ISNN 2006 (pp. 194–201). Springer.

  25. Lian, H.-C., Lu, B.-L. (2006). Multi-view gender classification using local binary patterns and support vector machines. In Advances in neural networks—ISNN 2006 (pp. 202–209). Springer.

  26. Shan, C. (2012). Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters, 33(4), 431–437.

    Article  Google Scholar 

  27. Shyam, R., & Singh, Y. N. (2015). Face recognition using augmented local binary pattern and Bray Curtis dissimilarity metric. In Signal processing and integrated networks (SPIN), 2015 2nd international conference on (pp. 779–784). IEEE.

  28. Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in ’real-life’ images: Detection, alignment, and recognition.

  29. BenAbdelkader, C., & Griffin, P. (2005). A local region-based approach to gender classification from face images. In Computer vision and pattern recognition-workshops, 2005. CVPR workshops. IEEE computer society conference on (p. 52). IEEE.

  30. Bartlett, M. S., Littlewort, G., Fasel, I., & Movellan, J. R. (2003). Real time face detection and facial expression recognition: Development and applications to human computer interaction. In Computer vision and pattern recognition workshop, 2003. CVPRW’03. Conference on (vol. 5, p. 53). IEEE.

  31. Song, Y., Bao, L., Yang, Q., & Yang, M.H. (2014). Real-time exemplar-based face sketch synthesis. In European Conference on Computer Vision (pp. 800–813). Springer.

  32. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  33. Dantone, M., Gall, J., Fanelli, G., Gool, L. V. (2012). Real-time facial feature detection using conditional regression forests. In Computer vision and pattern recognition (CVPR), 2012 IEEE conference on (pp. 2578–2585). IEEE.

  34. Meng, R., Shengbing, Z., Yi, L., & Meng, Z. (2014). CUDA-based real-time face recognition system. In Digital information and communication technology and it’s applications (DICTAP), 2014 fourth international conference on (pp. 237–241). IEEE.

  35. Tarvas, K., Bolotnikova, A., & Anbarjafari, G. (2016). Edge information based object classification for NAO robots. Cogent Engineering, 3(1), 1262571.

    Article  Google Scholar 

  36. Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W. (2012). Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In Computers and communications (ISCC), 2012 IEEE symposium on (pp. 000059–000066). IEEE.

  37. Viola, P., & Jones, M. (2001). Robust real-time object detection. International Journal of Computer Vision, 4, 51–52.

    Google Scholar 

  38. Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21–45.

    Article  Google Scholar 

  39. Spacek, L. (2007). Collection of facial images: Faces94. Computer vision science and research projects, University of Essex, UK. http://cswww.essex.ac.uk/mv/allfaces/faces94.html.

  40. Jonathon Phillips, P., Moon, H., Rizvi, S., Rauss, P. J., et al. (2000). The feret evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1090–1104.

    Article  Google Scholar 

  41. Gourier, N., Hall, D., & Crowley, J. L. (2004). Estimating face orientation from robust detection of salient facial structures. In FG Net workshop on visual observation of deictic gestures (pp. 1–9). FGnet (IST–2000–26434) Cambridge, UK.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Anbarjafari.

Additional information

This work has been partially supported by Estonian Information Technology Foundation, Skype Technologies, Estonian Research Council Grant (PUT638), the Estonian Centre of Excellence in IT (EXCITE) funded by the European Regional Development Fund and the European Network on Integrating Vision and Language (iV&L Net) ICT COST Action IC1307. The authors would like to thank the RoboCup SPL Team of University of Tartu, Philosopher, for helping to conduct real-time experiments and also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotnikova, A., Demirel, H. & Anbarjafari, G. Real-time ensemble based face recognition system for NAO humanoids using local binary pattern. Analog Integr Circ Sig Process 92, 467–475 (2017). https://doi.org/10.1007/s10470-017-1006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1006-3

Keywords

Navigation