Skip to main content

Advertisement

Log in

A universal approach for irreversible bonding of rigid substrate-based microfluidic devices at room temperature

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a simple and universal method for irreversibly bonding rigid substrate-based microfluidic devices at room temperature. In this method, a pre-patterned self-adhesive film covers and seals the area of the rigid substrate containing microchannels to create a closed microfluidic system, and then an adhesive-assisted sandwich bonding is used to reinforce the strength of bonding. The bonding can be achieved in 10 min at room temperature without requiring cleanroom facilities, complex surface modification, or employing rigorous cleaning. Despite its simplicity, this bonding method can create high-performance microfluidic devices with burst pressures over 2 MPa, but without channel clogging or microstructure deformation. The universality of this bonding method is demonstrated by applying it to the production of microfluidic devices with various rigid substrates. The simplicity, low cost, and universality of our method should allow it to be adopted by researchers lacking access to cleanroom facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abgrall P, Low L-N, Nguyen N-T (2007) Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 7:520–522

    Article  Google Scholar 

  • Anderson JR, Chiu DT, Wu H, Schueller O, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H (2009) Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip 9:3481–3488

    Article  Google Scholar 

  • Bhattacharyya A, Klapperich CM (2007) Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 7:876–882

    Article  Google Scholar 

  • Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6:66–73

    Article  Google Scholar 

  • Chen Q, Li G, Nie Y, Yao S, Zhao J (2014) Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration. Microfluid Nanofluid 16:83–90

    Article  Google Scholar 

  • Demello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  Google Scholar 

  • Gu P, Liu K, Chen H, Nishida T, Fan ZH (2010) Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal Chem 83:446–452

    Article  Google Scholar 

  • Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Huang Z, Sanders JC, Dunsmor C, Ahmadzadeh H, Landers JP (2001) A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis 22:3924–3929

    Article  Google Scholar 

  • Im SG, Bong KW, Lee C-H, Doyle PS, Gleason KK (2009) A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Lab Chip 9:411–416

    Article  Google Scholar 

  • Kappl M (2009) Surface and interfacial forces. Wiley, Weinheim

    Google Scholar 

  • Lin C-H, Chao C-H, Lan C-W (2007) Low azeotropic solvent for bonding of PMMA microfluidic devices. Sensors Actuators B Chem 121:698–705

    Article  Google Scholar 

  • Liu J, Qiao H, Liu C, Xu Z, Li Y, Wang L (2009) Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors Actuators B Chem 141:646–651

    Article  Google Scholar 

  • Mao P, Han J (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  Google Scholar 

  • Pan Y-J, Yang R-J (2006) A glass microfluidic chip adhesive bonding method at room temperature. J Micromech Microeng 16:2666

    Article  Google Scholar 

  • Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66:1490–1507

    Article  Google Scholar 

  • Roman GT, Culbertson CT (2006) Surface engineering of poly (dimethylsiloxane) microfluidic devices using transition metal sol–gel chemistry. Langmuir 22:4445–4451

    Article  Google Scholar 

  • Schlautmann S, Besselink G, Prabhu GR, Schasfoort R (2003) Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers. J Micromech Microeng 13:S81

    Article  Google Scholar 

  • Shah JJ, Geist J, Locascio LE, Gaitan M, Rao MV, Vreeland WN (2006) Capillarity induced solvent-actuated bonding of polymeric microfluidic devices. Anal Chem 78:3348–3353

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen N-T (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16:1681

    Article  Google Scholar 

  • Tang L, Lee NY (2010) A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip 10:1274–1280

    Article  Google Scholar 

  • Tennico YH, Koesdjojo MT, Kondo S, Mandrell DT, Remcho VT (2010) Surface modification-assisted bonding of polymer-based microfluidic devices. Sensors Actuators B Chem 143:799–804

    Article  Google Scholar 

  • Thompson CS, Abate AR (2013) Adhesive-based bonding technique for PDMS microfluidic devices. Lab Chip 13:632–635

    Article  Google Scholar 

  • Tsao C, Hromada L, Liu J, Kumar P, DeVoe D (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505

    Article  Google Scholar 

  • Vlachopoulou M, Tserepi A, Pavli P, Argitis P, Sanopoulou M, Misiakos K (2008) A low temperature surface modification assisted method for bonding plastic substrates. J Micromech Microeng 19:015007

    Article  Google Scholar 

  • Wallow TI et al (2007) Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab Chip 7:1825–1831

    Article  Google Scholar 

  • Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10:584–591

    Article  Google Scholar 

  • Wu H, Huang B, Zare RN (2005) Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5:1393–1398

    Article  Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  Google Scholar 

  • You JB, Min K-I, Lee B, Kim D-P, Im SG (2013) A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. Lab Chip 13:1266–1272

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the National Natural Science Foundation of China (No. 61771078 and 21407016), the National Key Research and Development Program (No. 2016YFC0101100), the Chongqing Research Program of Basic Research and Frontier Technology(No. cstc2017jcyjBX0036), and the Fundamental Research Funds for the Central Universities (No. 10611CDJXZ238826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ku, X., Zhuang, G. & Li, G. A universal approach for irreversible bonding of rigid substrate-based microfluidic devices at room temperature. Microfluid Nanofluid 22, 17 (2018). https://doi.org/10.1007/s10404-018-2039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2039-3

Keywords

Navigation