Skip to main content

Advertisement

Log in

Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Cholangiocarcinoma (CCA) is a cancer of the bile duct with high mortality rate and poor prognosis, owing to the difficulty in the early diagnosis and prognosis. The specific biomarkers or affinity reagents toward CCA cells could be great tools to assist in detection of CCA. However, screening of biomarkers/affinity reagents are generally labor-intensive, time-consuming and requiring large volume of samples and reagents. Therefore, we developed an integrated microfluidic system which could automatically perform selections of biomarkers and affinity reagents using phage display techniques. The experimental results showed that the selection of phage-displayed peptides bound to CCA cells was successfully demonstrated on the integrated microfluidic system using fewer reagents, samples and less time (5.25 h per biopanning round, and continuously performed for only 4 panning rounds). Three oligopeptides were screened, and their specificity and affinity toward CCA cells were characterized. Furthermore, comparing to conventional EpiEnrich beads for cancer cell capture, the screened CCA-specific peptides showed relatively low capture rate over control normal cells. It is envisioned that this microfluidic system may be a powerful tool for screening of biomarkers/affinity reagents in clinical diagnosis and target therapy for CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bp:

Base pairs

CA19-9:

Cancer antigen 19-9

CCA:

Cholangiocarcinoma

CCD:

Charge-coupled-device

CEA:

Carcinoembryonic antigen

CNC:

Computer-numerical-control

DMEM:

Dulbecco’s modified eagle medium

ddH2O:

Double-stilled water

E. coli :

Escherichia coli

EphA5:

Ephrin type-A receptor 5

EphA2:

Ephrin type-A receptor 2

EpiEnrich:

Epithelial Enrich

FITC:

Fluorescein isothiocyanate

FGFR2:

Fibroblast growth factor receptor 2

FGFR3:

Fibroblast growth factor receptor 3

FBS:

Fetal bovine serum

IPTG/X-Gal:

Isopropyl β-D-1-thiogalactopyranoside/5-bromo-4-chloro-3-indolyl-d-galactoside

LB:

Luria–Bertani

NCKUH:

National Cheng Kung University Hospital

PBS:

Phosphate buffer saline

PCR:

Polymerase chain reaction

PDMS:

Polydimethylsiloxane

PMMA:

Polymethylmethacrylate

RPMI:

Roswell park memorial institute

SOC:

Super optimal broth with catabolite repression

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Anderson CD, Pinson CW, Berlin J, Chari RS (2004) Diagnosis and treatment of cholangiocarcinoma. Oncologist 9:43–57

    Article  Google Scholar 

  • Arai Y et al (2014) Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59:1427–1434. doi:10.1002/hep.26890

    Article  Google Scholar 

  • Boot RG et al (2007) Identification of the non-lysosomal glucosylceramidase as β-glucosidase 2. J Biol Chem 282:1305–1312. doi:10.1074/jbc.M610544200

    Article  Google Scholar 

  • Bramucci E, Paiardini A, Bossa F, Pascarella S (2012) PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinf 13(Suppl 4):S2. doi:10.1186/1471-2105-13-S4-S2

    Article  Google Scholar 

  • Chang YH, Huang CJ, Lee GB (2012) A tunable microfluidic-based filter modulated by pneumatic pressure for separation of blood cells. Microfluid Nanofluid 12:85–94. doi:10.1007/s10404-011-0851-0

    Article  Google Scholar 

  • Che YJ, Wu HW, Hung LY, Liu CA, Chang HY, Wang K, Lee GB (2015) An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. Biomicrofluidics 9:054121. doi:10.1063/1.4933067

    Article  Google Scholar 

  • Cui XD, Lee MJ, Kim JH, Hao PP, Liu L, Yu GR, Kim DG (2013) Activation of mammalian target of rapamycin complex 1 (mTORC1) and Raf/Pyk2 by growth factor-mediated Eph receptor 2 (EphA2) is required for cholangiocarcinoma growth and metastasis. Hepatology 57:2248–2260. doi:10.1002/hep.26253

    Article  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  Google Scholar 

  • Haas SJ, Smith GP (1993) Rapid sequencing of viral DNA from filamentous bacteriophage. Biotechniques 15:422–424, 426–428, 431

  • Huang CW, Huang SB, Lee GB (2006) Pneumatic micropumps with serially connected actuation chambers. J Micromech Microeng 16:2265–2272. doi:10.1088/0960-1317/16/11/003

    Article  Google Scholar 

  • Ku JL et al (2002) Establishment and characterisation of six human biliary tract cancer cell lines. Br J Cancer 87:187–193. doi:10.1038/sj.bjc.6600440

    Article  Google Scholar 

  • Lavi A et al (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105. doi:10.1002/prot.24422

    Article  Google Scholar 

  • Liu Y, Adams JD, Turner K, Cochran FV, Gambhir SS, Soh HT (2009) Controlling the selection stringency of phage display using a microfluidic device. Lab Chip 9:1033–1036. doi:10.1039/b820985e

    Article  Google Scholar 

  • Maruyama M et al (2004) Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation 77:446–451. doi:10.1097/01.TP.0000110292.73873.25

    Article  Google Scholar 

  • Miyagiwa M, Ichida T, Tokiwa T, Sato J, Sasaki H (1989) A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium. In Vitro Cell Dev Biol 25:503–510

    Article  Google Scholar 

  • Munz M et al (2010) Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int 10:44. doi:10.1186/1475-2867-10-44

    Article  Google Scholar 

  • Nesbit GM, Johnson CD, James EM, Maccarty RL, Nagorney DM, Bender CE (1988) Cholangiocarcinoma—diagnosis and evaluation of resectability by CT and sonography as procedures complementary to cholangiography. Am J Roentgenol 151:933–938

    Article  Google Scholar 

  • Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180. doi:10.1038/nrc2806

    Article  Google Scholar 

  • Reinholz MM et al (2005) Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin Cancer Res 11:3722–3732. doi:10.1158/1078-0432.CCR-04-1483

    Article  Google Scholar 

  • Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185. doi:10.1038/nprot.2010.66

    Article  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  Google Scholar 

  • Talasaz AH et al (2009) Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA 106:3970–3975. doi:10.1073/pnas.0813188106

    Article  Google Scholar 

  • Tani K et al (1991) MR imaging of peripheral cholangiocarcinoma. J Comput Assist Tomogr 15:975–978

    Article  Google Scholar 

  • Van Beers BE (2008) Diagnosis of cholangiocarcinoma. HPB (Oxford) 10:87–93. doi:10.1080/13651820801992716

    Article  Google Scholar 

  • Wang J et al (2011) Selection of phage-displayed peptides on live adherent cells in microfluidic channels. Proc Natl Acad Sci USA 108:6909–6914. doi:10.1073/pnas.1014753108

    Article  Google Scholar 

  • Wang CH, Weng CH, Che YJ, Wang K, Lee GB (2015) Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics 5:431–442. doi:10.7150/thno.10891

    Article  Google Scholar 

  • Weng CH, Hsieh IS, Hung LY, Lin HI, Shiesh SC, Chen YL, Lee GB (2012) An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluid Nanofluid 14:753–765. doi:10.1007/s10404-012-1095-3

    Article  Google Scholar 

  • Wong I, Ho CM (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7:291–306. doi:10.1007/s10404-009-0443-4

    Article  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725. doi:10.1038/nrc1697

    Article  Google Scholar 

  • Xu Y et al (2000) Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J Biol Chem 275:38981–38989. doi:10.1074/jbc.M007668200

    Article  Google Scholar 

  • Yang YN, Hsiung SK, Lee GB (2008) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823–833. doi:10.1007/s10404-008-0356-7

    Article  Google Scholar 

  • Yang SY, Cheng FY, Yeh CS, Lee GB (2010) Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluid Nanofluid 8:303–311. doi:10.1007/s10404-009-0461-2

    Article  Google Scholar 

  • Zhou MY, Gomez-Sanchez CE (2000) Universal TA cloning. Curr Issues Mol Biol 2:1–7

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank financial support from the National Health Research Institute in Taiwan (NHREI-EX104-10428EI) and Ministry of Science and Technology in Taiwan (MOST 105-2119-M-007-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Shen Shan or Gwo-Bin Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CW., Fu, CY., Hung, LY. et al. Screening of peptide specific to cholangiocarcinoma cancer cells using an integrated microfluidic system and phage display technology. Microfluid Nanofluid 21, 145 (2017). https://doi.org/10.1007/s10404-017-1983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1983-7

Keywords

Navigation