Skip to main content

Advertisement

Log in

Global warming potential of French grassland-based dairy livestock systems under climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Despite the increasing interest in assessing the greenhouse gas (GHG) budget of livestock production systems, little is known about the possible impacts of climate change on the future contribution of such systems to global warming. The aim of this study was to assess the global warming potential (GWP) of differently managed grassland-based dairy systems, based either on permanent or on sown grasslands, under climate change at two sites: Avignon (sub-arid/arid) and Mirecourt (sub-humid/humid), representative of French contrasting climates. We compared the near-past conditions (1970–1999) and projections for 2020–2049 (near future) and 2070–2099 (far future), which correspond to the SRES A2 storyline projected by the ARPEGE climate model and downscaled with quantile–quantile regionalization method. The pasture simulation model (PaSim) simulated on-site GHG emissions. Off-site emissions were assessed according to the 2006 IPCC guidelines and attributed to the corresponding grassland field under the assumption that harvested herbage is fully eaten by stalled cattle. The attributed GWP (GWPAtt) of each system was calculated by subtracting from the net C storage the N2O and CH4 emissions occurring within the grassland plot and off-site emissions resulting from farm effluents (i.e. solid and liquid manure and slurry) and the digestion and enteric fermentation by cattle of the cut herbage. Climate change was not expected to significantly modify the GWPAtt of systems, on average, but general trends were observed. Systems based on permanent grasslands presented the largest increase in GWPAtt in the far future, due to faster soil organic matter (SOM) decomposition under climate change and the additional GHG fluxes induced by increased forage production and digestion by dairy-stalled cattle. GWPAtt increase was more evident in extensively managed grassland systems conducted in humid environments (Mirecourt), with twofold higher GWPAtt. On the contrary, GWPAtt reduction is expected to be met with systems based on sown grasslands where SOM decomposition acceleration is compensated by enhanced net primary production, especially under humid conditions (Mirecourt) and for irrigated systems (with a 13% reduction of GWPAtt expressed per livestock unit day, LSU d). Although the expected reduction of the net C storage (down to 68% at Mirecourt in far future), systems based on extensive permanent grasslands will continue to be the least detrimental to global warming, with an GWPAtt of 1.2 t CO2–C eq. ha−1 year−1 and of 3.4 kg CO2–C eq. LSU−1 day−1 year−1 in the far future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla M, Jones M, Yeluripati J, Smith P, Burke J, Williams M (2010) Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmos Environ 44:2961–2970

    Article  CAS  Google Scholar 

  • Allard V, Soussana J-F, Falcimagne R, Berbigier P, Bonnefond JM, Ceschia E, D’hour P, Hénault C, Laville P, Martin C, Pinarès-Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric Ecosyst Environ 12:47–58

    Article  Google Scholar 

  • Allcroft DJ, Glasbey CA (2003) A latent Gaussian Markov random field model for spatiotemporal rainfall disaggregation. Appl Stat 52:487–498

    Google Scholar 

  • Barnard R, Barthes L, Leadley PW (2006) Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant Soil 280:91–99

    Article  CAS  Google Scholar 

  • Basset-Mens C, Kelliher FM, Ledgard S, Cox N (2009) Uncertainty of global warming potential for milk production on a New Zealand farm and implications for decision making. Int J Life Cycle Assess 14:630–638

    Article  CAS  Google Scholar 

  • Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Change 11(Suppl. 1):S151–S158

    Article  Google Scholar 

  • Blankinship JC, Brown JR, Dijkstra P, Allwright MC, Hungate BA (2010) Response of terrestrial CH4 uptake to interactive changes in precipitation and temperature along a climatic gradient. Ecosystems 13:1157–1170

    Article  CAS  Google Scholar 

  • Brisson N, Levrault F (2010) Climate change, agriculture and forests in France: simulations of the impacts on the main species. The green book of the CLIMATOR project (2007–2010). ADEME, Angers (available at: http://www2.ademe.fr/servlet/getDoc?sort=-1&cid=96&m=3&id=76705&ref=&nocache=yes&p1=111)

  • Cantarel AAM, Bloor JMG, Deltroy N, Soussana JF (2011) Effects of climate change drivers on nitrous oxide fluxes in a upland temperate grassland. Ecosystems 14:223–233

    Article  CAS  Google Scholar 

  • Chen DL, Li Y, Grace P, Mosier AR (2008) N2O emissions from agricultural lands: a synthesis of simulation approaches. Plant Soil 309:169–189

    Article  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend A-D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J-M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J-F, Sanz M-J, Schulze E-D, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 33:437–529

    Google Scholar 

  • Conant RT, Paustian K, Del Grosso S, Parton WJ (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr Cycl Agroecosys 71:239–248

    Article  CAS  Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Global Planet Change 57:16–26

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive agricultural systems. Variation between crops and seasons, key driving variables and mean emission factors. J Geophys Res 104:26891–26899

    Article  CAS  Google Scholar 

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Proc Roy Soc A Math Phy 369:1010–1035

    Google Scholar 

  • Farquharson R, Baldock J (2008) Concepts in modelling N2O emissions from land use. Plant Soil 309:147–167

    Article  CAS  Google Scholar 

  • Fiorelli JL, Drouet JL, Duretz S, Gabrielle B, Graux A-I, Blanfort V, Capitaine M, Cellier P, Soussana J-F (2008) Evaluation of greenhouse gas emissions and design of mitigation options: a whole farm approach based on farm management data and mechanistic models. In: Benoît D (ed) Empowerment of the rural actors. A renewal of farming systems perspectives. 8th European IFSA symposium, 6–10 July, Clermont-Ferrand, pp 693–701

  • Gibelin A-L, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Graux A-I (2011) Modélisation des impacts du changement climatique sur les écosystèmes prairiaux. Voies d’adaptations des systèmes fourragers. PhD Thesis, Blaise Pascal University, Clermont-Ferrand

  • Graux A-I, Gaurut M, Agabriel J, Baumont R, Delagarde R, Delaby L, Soussana J-F (2011) Development of the Pasture simulation model for assessing livestock production under climate change. Agric Ecosyst Environ 144:69–91

    Article  Google Scholar 

  • Gworgwor ZA, Mbahi TF, Yakubu B (2006) Environmental implications of methane production by ruminants: a review. J Sustain Dev Agric Environ 2. ISSN 0794-8867

  • Haan CT (2002) Statistical methods in hydrology, 2nd edn. Iowa State University Press, Ames, IO

    Google Scholar 

  • Hindrichsen IK, Wettstein HR, Machmüller A, Kreuzer M (2006) Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agric Ecosyst Environ 113:150–161

    Article  CAS  Google Scholar 

  • Hsieh C-I, Leahy P, Kiely G, Li C (2005) The effects of future climate perturbations on N2O emissions from a fertilized humid grassland. Nutr Cycl Agroecosys 73:15–23

    Article  CAS  Google Scholar 

  • INRA (1989) Ruminant nutrition: recommended allowances and feed tables. John Libbey Eurotext, Paris

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge

  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Greenhouse gas inventories programme. Institute for Global Environmental Strategies, Hayama

  • IPCC (2007a) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge

  • IPCC (2007b) Climate change: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7–12% of European anthropogenic CO2 emissions. Science 300:1538–1542

    Article  CAS  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Kruskal W, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Loiseau P, Soussana J-F (2000) Effects of elevated CO2, temperature and N fertilization on nitrogen fluxes in a temperate grassland ecosystem. Global Change Biol 6:953–965

    Article  Google Scholar 

  • Lovett DK, Shalloo L, Dillon P, O’Mara FP (2008) Greenhouse gas emissions from pastoral based dairying systems: the effect of uncertainty and management change under two contrasting production systems. Livest Sci 116:260–274

    Article  Google Scholar 

  • Lowe DC (2006) A green source of surprise. Nature 439:146–149

    Article  Google Scholar 

  • Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci 86:2642–2650

    Article  CAS  Google Scholar 

  • Martin C, Morgavi DP, Doreau M (2009) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–365

    Article  Google Scholar 

  • Meza FI (2006) Obtaining daily precipitation parameters from meteorological yearbooks. Agric Forest Meteorol 138:216–230

    Article  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1998) Assessing and mitigating N2O emissions from agricultural soils. Clim Change 40:7–38

    Article  CAS  Google Scholar 

  • Nakičenovič N (2000) Greenhouse gas emissions scenarios. Technol Forecast Soc Chang 65:149–166

    Article  Google Scholar 

  • Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—the effect of drought. Biogeosciences 4:791–802

    Article  CAS  Google Scholar 

  • Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonié L, Couteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42

    Article  CAS  Google Scholar 

  • Riedo M, Grub A, Rosset M, Fuhrer J (1998) A pasture simulation model for dry matter production and fluxes of carbon, nitrogen, water and energy. Ecol Model 105:41–183

    Article  Google Scholar 

  • Riedo M, Milford C, Schmid M, Sutton MA (2002) Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecol Model 158:83–110

    Article  CAS  Google Scholar 

  • Saggar S, Tate KR, Giltrap DL, Singh J (2008) Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil 309:25–42

    Article  CAS  Google Scholar 

  • Schmid M, Neftel A, Riedo M, Fuhrer J (2001) Process-based modelling of nitrous oxide emissions from different nitrogen sources in mown grassland. Nutr Cycl Agroecosys 60:177–187

    Article  CAS  Google Scholar 

  • Seegers J, Caillaud D, Meudre A-M, Laurent M, Fagon J, Reuillon J-L, Rubin B, Désarménien D, Pavie J, Le Lan B, Béguin E (2009) Résultats 2007 des exploitations d’élevage bovins lait: synthèse nationale des données des réseaux d’élevage. Institut de l’Elevage, Paris. Available at: http://www.inst-elevage.asso.fr/IMG/pdf_CR_080950006-v.pdf

  • Seijan V, Lal R, Lakritz J, Ezeji T (2011) Measurement and prediction of enteric methane emission. Int J Biometeorol 55:1–16

    Article  Google Scholar 

  • Silanikove N (2000) Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest Prod Sci 67:1–18

    Article  Google Scholar 

  • Smirnov V (1939) On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull Moscow Univ Int Ser Math 2:3–16

    Google Scholar 

  • Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11:2141–2152

    Article  Google Scholar 

  • Soussana J-F (2008) The role of the carbon cycle for the greenhouse gas balance of grasslands and of livestock production systems. In: Rowlinson P, Steele M, Nefzaoui A (eds) Proceedings of the international conference on livestock and global climate change of the british society of animal science, 17–20 May, Hammamet, pp 12–15

  • Soussana J-F, Pilegaard K, Ambus P, Berbigier P, Ceschia E, Clifton-Brown J, Czobel S, de Groot T, Fuhrer J, Horvath L, Hensen A, Jones M, Kasper G, Martin C, Milford C, Nagy Z, Neftel A, Raschi A, Rees RM, Skiba U, Stefani P, Saletes S, Sutton MA, Tuba Z, Weidinger T (2004) Annual greenhouse gas balance of European grasslands—first results from the GreenGrass project. In: International conference greenhouse gas emissions from agriculture-mitigation options and strategies, 10–12 February, Leipzig, pp 25–30

  • Soussana J-F, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees R, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R (2007) Full accounting of the greenhouse gas budget of nine European grassland sites. Agric Ecosyst Environ 121:121–134

    Article  CAS  Google Scholar 

  • Soussana J-F, Graux A-I, Tubiello FN (2010a) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61:2217–2228

    Article  CAS  Google Scholar 

  • Soussana J-F, Klumpp K, Tallec T (2010b) Mitigating livestock greenhouse gas balance through carbon sequestration in grasslands. IOP Conf Ser Earth Environ Sci 6:242048

    Article  Google Scholar 

  • Steinfeld H, Hoffmann I (2008) Livestock, greenhouse gases and global climate change. In: Rowlinson P, Steele M, Nefzaoui A (eds) Proceedings of the international conference on livestock and global climate change of the British Society of animal science, 17–20 May, Hammamet, p 8

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow. Food and Agriculture Organization of the United Nations, Rome. Available at: http://www.fao.org/docrep/010/a0701e/a0701e00.htm

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci USA 104:19686–19690

    Article  CAS  Google Scholar 

  • Veysset P, Lherm M, Bébin D (2010) Energy consumption, greenhouse gas emissions and economic performance in French Charolais suckler cattle farms: Model-based analysis and forecasts. Agr Syst 103:41–50

    Article  Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Global Change Biol 8:519–530

    Article  Google Scholar 

  • Vuichard N, Ciais P, Viovy N, Calanca P, Soussana J-F (2007a) Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 2. Simulations at the continental level. Global Biogeochem Cy 21:GB1005.1–GB1005.13

  • Vuichard N, Soussana J-F, Ciais P, Viovy N, Ammann C, Calanca P, Clifton-Brown J, Fuhrer J, Jones M, Martin C (2007b) Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 1. Model evaluation from in situ measurements. Global Biogeochem Cy 21:GB1004.1–GB1004.14

    Google Scholar 

  • Woodward A, Scheraga J (2003) Looking to the future: challenges for scientists studying climate change and health. In: McMichael A, Campbell-Lendrum D, Corvalán C, Ebi K, Githeko A, Scheraga J, Woodward A (eds) Climate change and human health: risks and responses. World Health Organisation, Geneva, pp 61–78

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Auvergne Region of France and by the ANR CLIMATOR project Vulnérabilité, Climat et Sociétés. A high-performance gridded-platform provided by LIMOS (http://www.isima.fr/limos) was accessed to cut down the execution time required to run PaSim simulations, for which we acknowledged Prof. David Hill (Blaise Pascal University, Clermont-Ferrand, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Isabelle Graux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graux, AI., Lardy, R., Bellocchi, G. et al. Global warming potential of French grassland-based dairy livestock systems under climate change. Reg Environ Change 12, 751–763 (2012). https://doi.org/10.1007/s10113-012-0289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0289-2

Keywords

Navigation