Skip to main content
Log in

Vibro-acoustic response of sandwich plates with functionally graded core

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the vibro-acoustic modeling and analysis of sandwich plateswith metal–ceramic functionally graded (FG) core using a simplified first-order shear deformation theory and elemental radiator approach. A simply supported rectangular plate having functionally graded core, metal and ceramic facesheets is considered with aluminum as metal and alumina as ceramic. The material properties of the core are assumed to vary according to a power law distribution of the volume fraction of the constituents. The sound radiation due to point load and uniformly distributed load is computed by numerically solving the Rayleigh integral. The effective material properties of the sandwich plate are presented as a function of core thickness. The vibration parameters in terms of natural frequencies, plate displacement and velocity, and acoustic parameters such as radiated sound power level, radiated sound pressure level and radiation efficiency are computed for various values of the power law index. A comprehensive study of the influence of core thickness on vibro-acoustic performance is presented in terms of mean-squared velocity and overall sound power level. It is found that, for the plate being considered, the sound power level increases with increase in the power law index of the core at lower frequency segment. Increased vibro-acoustic response is observed in the high-frequency band for ceramic-rich FG core and in the low-frequency band for metal-rich FG core, respectively. A sandwich plate with metal-rich FG core configuration has shown improved flexural stiffness, compared to an FG plate with no significant rise in overall radiated sound. It is possible with this analysis to suitably tailor and optimize the sandwich FG plates for multifunctional performance and desired vibro-acoustic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zenkert D.: The Handbook of Sandwich Construction. Engineering Materials Advisory Service Ltd, London (1997)

    Google Scholar 

  2. Vinson J.R.: Sandwich structures. Appl. Mech. Rev. 54, 201–214 (2001)

    Article  Google Scholar 

  3. Plantema F.J.: Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and Shells. Wiley, New York (1966)

    Google Scholar 

  4. Allen H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford (1969)

    Google Scholar 

  5. Whitney J.M.: Structural Analysis of Laminated Anisotropic Plates. Technomic, Lancaster (1987)

    Google Scholar 

  6. Zenkert D.: An Introduction to Sandwich Construction. Chameleon Press, London (1995)

    Google Scholar 

  7. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: Proceedings of the First International Symposium on Functionally Gradient Materials. Sendai, Japan (1990)

  8. Koizumi M.: The concept of FGM. Ceram. Trans. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  9. Bishop A., Navaratnam M., Rawlings R.D., McShane H.B.: Functionally gradient material produced by a power metallurgical process. J. Mater. Sci. Lett. 12, 1516–1518 (1993)

    Google Scholar 

  10. Koizumi M., Niino M.: Overview of FGM research in Japan. MRS Bull. 20, 19–21 (1995)

    Article  Google Scholar 

  11. Butcher R.J., Rousseau C.E., Tippur H.V.: A functionally graded particulate composite: preparation, measurements and failure analysis. Acta Mater. 47, 259–268 (1998)

    Article  Google Scholar 

  12. Wilby J.F.: Aircraft interior noise. J. Sound Vib. 190, 545–564 (1996)

    Article  Google Scholar 

  13. Birman V., Byrd L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195–216 (2007)

    Article  Google Scholar 

  14. Jha D.K., Kant T., Singh R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  15. Reddy J.N., Cheng Z.Q.: Frequency of functionally graded plates with three-dimensional asymptotic approach. J. Eng. Mech. ASCE 129, 896–900 (2003)

    Article  Google Scholar 

  16. Vel S.S., Batra R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272, 703–730 (2004)

    Article  Google Scholar 

  17. Reddy J.N.: Analysis of functionally graded plates. Int. J. Numer. Meth. Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  18. Pradyumna S., Bandyopadhyay J.N.: Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J. Sound Vib. 318, 176–192 (2008)

    Article  Google Scholar 

  19. Neves A.M.A., Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Jorge R.M.N., Soares C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B Eng. 43, 711–725 (2012)

    Article  MATH  Google Scholar 

  20. Abrate S.: Free vibration, buckling, and static deflections of functionally graded plates. Compos. Sci. Technol. 66, 2383–2394 (2006)

    Article  Google Scholar 

  21. Zenkour A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30, 67–84 (2006)

    Article  MATH  Google Scholar 

  22. Venkataraman, S., Sankar, B.V.: Analysis of sandwich beams with functionally graded core. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, AIAA-2001, vol, 1281, pp. 16–19 (2001)

  23. Anderson T.A.: A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Compos. Struct. 60, 265–274 (2003)

    Article  Google Scholar 

  24. Zenkour A.M.: A comprehensive analysis of functionally graded sandwich plates: Part 1—Deflection and stresses. Int. J. Solids. Struct. 42, 5224–5242 (2005)

    Article  MATH  Google Scholar 

  25. Zenkour A.M.: A comprehensive analysis of functionally graded sandwich plates: Part 1—Buckling and free vibration. Int. J. Solids. Struct. 42, 5243–5258 (2005)

    Article  MATH  Google Scholar 

  26. Kirugulige M.S., Kitey R., Tippur H.V.: Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos. Sci. Technol. 65, 1052–1068 (2005)

    Article  Google Scholar 

  27. Shodja H.M., Haftbaradaran H., Asghari M.: A thermoelasticity solution of sandwich structures with functionally graded coating. Compos. Sci. Technol. 67, 1073–1080 (2007)

    Article  Google Scholar 

  28. Li Q., Iu V.P., Kou K.P.: Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 311, 498–515 (2008)

    Article  Google Scholar 

  29. Kashtalyan M., Menshykova M.: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos. Struct. 87, 36–43 (2009)

    Article  Google Scholar 

  30. Woodward B., Kashtalyan M.: Bending response of sandwich panels with graded core: 3D elasticity analysis. Mech. Adv. Mater. Struct. 17, 586–594 (2010)

    Article  Google Scholar 

  31. Xiang S., Jin Y., Bi Z., Jiang S., Yang M.: A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Compos. Struct. 93, 2826–2832 (2011)

    Article  Google Scholar 

  32. Dozio L.: Natural frequencies of sandwich plates with FGM core via variable-kinematic 2-D Ritz models. Compos. Struct. 96, 561–568 (2013)

    Article  Google Scholar 

  33. Thai H.T., Choi D.H.: A simple first order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos. Struct. 101, 332–340 (2013)

    Article  Google Scholar 

  34. Hasheminejad S.M., Shabanimotlagh M.: Sound insulation characteristics of functionally graded panels. Acta. Acust. 94, 290–300 (2008)

    Article  Google Scholar 

  35. Huang C., Nutt S.: Sound transmission prediction using 3-D elasticity theory. Appl. Acoust. 70, 730–736 (2009)

    Article  Google Scholar 

  36. Kumar B.R., Ganesan N., Sethuraman R.: Vibro-acoustic analysis of functionally graded elliptic disc under thermal environment. Mech. Adv. Mater. Struct. 16, 160–172 (2009)

    Article  Google Scholar 

  37. Daneshjou K., Shokrieh M.M., Ghorbani Moghaddam M., Talebitooti R.: Analytical model of sound transmission through relatively thick FGM cylindrical shells considering third order shear deformation theory. Compos. Struct. 93, 67–78 (2010)

    Article  Google Scholar 

  38. Huang C., Nutt S.: An analytical study of sound transmission through unbounded panels of functionally graded materials. J. Sound Vib. 330, 1153–1165 (2011)

    Article  Google Scholar 

  39. Wallace C.E.: Radiation resistance of a rectangular panel. J. Acoust. Soc. Am. 51, 946–952 (1972)

    Article  Google Scholar 

  40. Elliott S.J., Johnson M.E.: Radiation modes and the active control of sound power. J. Acoust. Soc. Am. 94, 2194–2204 (1993)

    Article  Google Scholar 

  41. Atalla N., Nicolas J., Gauthier C.: Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions. J. Acoust. Soc. Am. 99, 1484–1494 (1996)

    Article  Google Scholar 

  42. Xie G., Thompson D.J., Jones C.J.C.: The radiation efficiency of baffled plates and strips. J. Sound Vib. 280, 181–209 (2005)

    Article  Google Scholar 

  43. Geng, Q., Li, Y.: Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments. J. Vib. Control. doi:10.1177/1077546314543730 (2014)

  44. Chandra N., Raja S., Nagendra Gopal K.V.: Vibro-acoustic response and sound transmission loss analysis of functionally graded plates. J. Sound Vib. 333, 5786–5802 (2014)

    Article  Google Scholar 

  45. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  46. Fahy F.J.: Foundations of Engineering Acoustics, pp. 118–124. Academic Press, California (2001)

    Google Scholar 

  47. Fahy F.J., Gardonio P.: Sound and Structural Vibration: Radiation, Transmission and Response, pp. 150–159. Academic Press, Oxford (2007)

    Google Scholar 

  48. Roussos L.A.: Noise Transmission Loss of a Rectangular Plate in an Infinite Baffle. NASA TR 2398, Washington, DC (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Nagendra Gopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, N., Nagendra Gopal, K.V. & Raja, S. Vibro-acoustic response of sandwich plates with functionally graded core. Acta Mech 228, 2775–2789 (2017). https://doi.org/10.1007/s00707-015-1513-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1513-1

Keywords

Navigation