Skip to main content

Advertisement

Log in

Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Endogenous retroviruses (ERVs) are important retroelements that reside in host genomes. However, ERV expression patterns and regulatory mechanisms are poorly understood. In this study, chicken embryo fibroblasts (CEFs) and MSB1 cells infected with Marek’s disease virus (MDV) exhibited significantly increased expression of env from the endogenous retrovirus ALVE. In contrast, env expression was significantly lower in CEF and MSB1 cells infected with exogenous avian leukosis virus J (ALVJ) at the early infection stage. Furthermore, env was found to be ubiquitously expressed in various chicken tissues, with high expression in certain tissues at 2 days of age and low levels in most tissues, including immune organs (thymus, spleen and bursa) as well as the brain and heart, at 35 days of age. Sequence analysis revealed miR-155 target sites in env transcripts, which was verified using a firefly luciferase reporter assay, and treatment with miR-155 agomir significantly decreased levels of env transcripts in MSB1 and CEF cells. Together, these findings suggest that the env gene from the endogenous retrovirus ALVE is regulated by miR-155.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernecker C, Lenz L, Ostapczuk MS, Schinner S, Willenberg H, Ehlers M, Vordenbaumen S, Feldkamp J, Schott M (2012) MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid Off J Am Thyroid Assoc 22:1294–1295

    Article  CAS  Google Scholar 

  2. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  Google Scholar 

  3. Denesvre C, Soubieux D, Pin G, Hue D, Dambrine G (2003) Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J Gen Virol 84:3233–3238

    Article  CAS  PubMed  Google Scholar 

  4. Dieckhoff B, Kessler B, Jobst D, Kues W, Petersen B, Pfeifer A, Kurth R, Niemann H, Wolf E, Denner J (2009) Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation 16:64–73

    Article  PubMed  Google Scholar 

  5. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532:1–12

    Article  CAS  PubMed  Google Scholar 

  6. Feschotte C, Gilbert C (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13:283–296

    Article  CAS  PubMed  Google Scholar 

  7. Fragnet L, Kut E, Rasschaert D (2005) Comparative functional study of the viral telomerase RNA based on natural mutations. J Biol Chem 280:23502–23515

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Etxebarria K, Sistiaga-Poveda M, Jugo BM (2014) Endogenous retroviruses in domestic animals. Curr Genomics 15:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, Cookinham S, King SR, Noel RJ Jr, Kaplan MH, Markovitz DM (2012) Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 86:7790–7805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holt MP, Shevach EM, Punkosdy GA (2013) Endogenous mouse mammary tumor viruses (mtv): new roles for an old virus in cancer, infection, and immunity. Front Oncol 3:287

    Article  PubMed  PubMed Central  Google Scholar 

  11. Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T, Ikuta K, Jern P, Gojobori T, Coffin JM, Tomonaga K (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT (2009) EBV LMP-2A employs a novel mechanism to transactivate the HERV-K18 superantigen through its ITAM. Virology 385:261–266

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Qin A, Qian K, Shao H, Yu C, Xu W, Miao J (2012) Analysis of protein expression profiles in the thymus of chickens infected with Marek’s disease virus. Virol J 9:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu X, Ye J, Qin A, Zou H, Shao H, Qian K (2015) Both microRNA-155 and virus-encoded MiR-155 ortholog regulate TLR3 expression. PLoS One 10:e0126012

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu X, Zou H, Qin A, Qian K, Shao H, Ye J (2016) Activation of Toll-like receptor 3 inhibits Marek’s disease virus infection in chicken embryo fibroblast cells. Arch Virol 161:521–528

    Article  CAS  PubMed  Google Scholar 

  16. Ito J, Watanabe S, Hiratsuka T, Kuse K, Odahara Y, Ochi H, Kawamura M, Nishigaki K (2013) Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 87:12029–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones RB, Garrison KE, Mujib S, Mihajlovic V, Aidarus N, Hunter DV, Martin E, John VM, Zhan W, Faruk NF, Gyenes G, Sheppard NC, Priumboom-Brees IM, Goodwin DA, Chen L, Rieger M, Muscat-King S, Loudon PT, Stanley C, Holditch SJ, Wong JC, Clayton K, Duan E, Song H, Xu Y, SenGupta D, Tandon R, Sacha JB, Brockman MA, Benko E, Kovacs C, Nixon DF, Ostrowski MA (2012) HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. J Clin Investig 122:4473–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozak CA (2015) Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 7:1–26

    Article  PubMed Central  Google Scholar 

  19. Kraus B, Monk B, Sliva K, Schnierle BS (2012) Expression of human endogenous retrovirus-K coincides with that of micro-RNA-663 and -638 in germ-cell tumor cells. Anticancer Res 32:4797–4804

    CAS  PubMed  Google Scholar 

  20. Kurth R, Bannert N (2010) Beneficial and detrimental effects of human endogenous retroviruses. Int J Cancer J Int Cancer 126:306–314

    Article  CAS  Google Scholar 

  21. Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002) Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 86:93–100

    Article  CAS  PubMed  Google Scholar 

  22. Lee WJ, Kwun HJ, Kim HS, Jang KL (2003) Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cells 15:75–80

    CAS  PubMed  Google Scholar 

  23. Malfavon-Borja R, Feschotte C (2015) Fighting fire with fire: Endogenous retrovirus envelopes as restriction factors. J Virol

  24. Manghera M, Douville RN (2013) Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 10:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mei M, Ye J, Qin A, Wang L, Hu X, Qian K, Shao H (2015) Identification of novel viral receptors with cell line expressing viral receptor-binding protein. Sci Rep 5:7935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moroni C, Schumann G (1978) Mitogen induction of murine C-type viruses. IV. Effects of lipoprotein E. coli, pokeweed mitogen and dextran sulphate. J Gen Virol 38:497–503

    Article  CAS  PubMed  Google Scholar 

  27. Muylkens B, Coupeau D, Dambrine G, Trapp S, Rasschaert D (2010) Marek’s disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes. Arch Virol 155:1823–1837

    Article  CAS  PubMed  Google Scholar 

  28. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  Google Scholar 

  29. Perl A (2003) Role of endogenous retroviruses in autoimmune diseases. Rheum Dis Clin N Am 29:123–143 (vii)

    Article  Google Scholar 

  30. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23:421–425

    Article  CAS  PubMed  Google Scholar 

  31. Robinson HL, Astrin SM, Senior AM, Salazar FH (1981) Host susceptibility to endogenous viruses: defective, glycoprotein-expressing proviruses interfere with infections. J Virol 40:745–751

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam DB, Trono D (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240

    Article  CAS  PubMed  Google Scholar 

  33. Sacco MA, Flannery DM, Howes K, Venugopal K (2000) Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol 74:1296–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sacco MA, Nair VK (2014) Prototype endogenous avian retroviruses of the genus Gallus. J Gen Virol 95:2060–2070

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki N, Ogawa Y, Iinuma C, Tomaru U, Katsumata K, Otsuka N, Kasahara M, Yoshiki T, Ishizu A (2009) Human endogenous retrovirus-R Env glycoprotein as possible autoantigen in autoimmune disease. AIDS Res Hum Retrovir 25:889–896

    Article  CAS  PubMed  Google Scholar 

  36. Schumann G, Moroni C (1977) Mitogen induction of murine C-type viruses. III. Effect of culture conditions, age, and genotype. Virology 79:81–87

    Article  CAS  PubMed  Google Scholar 

  37. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001) Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15:579–589

    Article  CAS  PubMed  Google Scholar 

  38. Sutkowski N, Chen G, Calderon G, Huber BT (2004) Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 78:7852–7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tacke SJ, Specke V, Denner J (2003) Differences in release and determination of subtype of porcine endogenous retroviruses produced by stimulated normal pig blood cells. Intervirology 46:17–24

    Article  PubMed  Google Scholar 

  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toufaily C, Landry S, Leib-Mosch C, Rassart E, Barbeau B (2011) Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3:2146–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varela M, Spencer TE, Palmarini M, Arnaud F (2009) Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann N Y Acad Sci 1178:157–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) miR-155: an ancient regulator of the immune system. Immunol Rev 253:146–157

    Article  PubMed  Google Scholar 

  44. Yu P, Lubben W, Slomka H, Gebler J, Konert M, Cai C, Neubrandt L, Prazeres da Costa O, Paul S, Dehnert S, Dohne K, Thanisch M, Storsberg S, Wiegand L, Kaufmann A, Nain M, Quintanilla-Martinez L, Bettio S, Schnierle B, Kolesnikova L, Becker S, Schnare M, Bauer S (2012) Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Program of China (973 Program, 2012CB517605), National Natural Science Foundation of China (81171965, 81372237 and 91540117), China Postdoctoral Science Foundation (Grant No. 2015M571828), and Projects Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Animal Science & Veterinary Medicine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengmi Cui.

Ethics declarations

All authors declare that they have no conflict of interest. This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Yangzhou University. The protocol was approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (License Number: 06R015). This article does not contain any studies with human participants performed by any of the authors.

Additional information

X. Hu, W. Zhu and S. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhu, W., Chen, S. et al. Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155. Arch Virol 161, 1623–1632 (2016). https://doi.org/10.1007/s00705-016-2833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2833-8

Keywords

Navigation