Skip to main content

Advertisement

Log in

Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infectious bursal disease virus (IBDV) is an important poultry pathogen. The VP2 protein of IBDV is the major host-protective immunogen. Although the functions of the VP2 protein have been well studied, the factors shaping synonymous codon usage bias and nucleotide composition in the VP2 gene have not yet been reported. In the present study, we have analyzed the relative synonymous codon usage and effective number of codons (ENC) using 69 IBDV VP2 genes. The major trend in codon usage variation was studied using correspondence analysis. The plot of ENC values and GC3s as well as the correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in the VP2 gene. In addition, other factors, such as the aromaticity, hydrophobicity and aliphatic index also influence the codon usage variation of the VP2 gene. This study represents a comprehensive analysis of IBDV VP2 gene codon usage patterns and provides a basic understanding of the codon usage bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Lukert PD, Leonard J, Davis RB (1975) Infectious bursal disease virus: antigen production and immunity. Am J Vet Res 36(4 Pt 2):539–540

    CAS  PubMed  Google Scholar 

  2. Sharma JM, Kim IJ, Rautenschlein S, Yeh HY (2000) Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol 24(2–3):223–235 (S0145-305X(99)00074-9)

    Article  CAS  PubMed  Google Scholar 

  3. Lasher HN, Davis VS (1997) History of infectious bursal disease in the U.S.A.—the first two decades. Avian Dis 41(1):11–19

    Article  CAS  PubMed  Google Scholar 

  4. Saif YM (1998) Infectious bursal disease and hemorrhagic enteritis. Poult Sci 77(8):1186–1189

    Article  CAS  PubMed  Google Scholar 

  5. Banda A, Villegas P, El-Attrache J (2003) Molecular characterization of infectious bursal disease virus from commercial poultry in the United States and Latin America. Avian Dis 47(1):87–95

    Article  CAS  PubMed  Google Scholar 

  6. Bahmaninejad MA, Hair-Bejo M, Omar AR, Aini I, Toroghi R (2008) Characterization of three infectious bursal disease virus isolates obtained from layer chickens in Iran. Acta Virol 52(3):167–174

    CAS  PubMed  Google Scholar 

  7. Kasanga CJ, Yamaguchi T, Munang’andu HM, Ohya K, Fukushi H (2013) Genomic sequence of an infectious bursal disease virus isolate from Zambia: classical attenuated segment B reassortment in nature with existing very virulent segment A. Arch Virol 158(3):685–689. doi:10.1007/s00705-012-1531-4

    Article  CAS  PubMed  Google Scholar 

  8. Negash T, Gelaye E, Petersen H, Grummer B, Rautenschlein S (2012) Molecular evidence of very virulent infectious bursal disease viruses in chickens in Ethiopia. Avian Dis 56(3):605–610

    Article  PubMed  Google Scholar 

  9. Nagarajan MM, Kibenge FS (1997) Infectious bursal disease virus: a review of molecular basis for variations in antigenicity and virulence. Can J Vet Res 61(2):81–88

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Jackwood DJ, Jackwood RJ (1994) Infectious bursal disease viruses: molecular differentiation of antigenic subtypes among serotype 1 viruses. Avian Dis 38(3):531–537

    Article  CAS  PubMed  Google Scholar 

  11. Snyder DB, Vakharia VN, Savage PK (1992) Naturally occurring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States. Arch Virol 127(1–4):89–101

    Article  CAS  PubMed  Google Scholar 

  12. Caston JR, Martinez-Torrecuadrada JL, Maraver A, Lombardo E, Rodriguez JF, Casal JI, Carrascosa JL (2001) C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75(22):10815–10828. doi:10.1128/JVI.75.22.10815-10828.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kumar S, Ahi YS, Salunkhe SS, Koul M, Tiwari AK, Gupta PK, Rai A (2009) Effective protection by high efficiency bicistronic DNA vaccine against infectious bursal disease virus expressing VP2 protein and chicken IL-2. Vaccine 27(6):864–869. doi:10.1016/j.vaccine.2008.11.085

    Article  CAS  PubMed  Google Scholar 

  14. Perozo F, Villegas AP, Fernandez R, Cruz J, Pritchard N (2009) Efficacy of single dose recombinant herpesvirus of turkey infectious bursal disease virus (IBDV) vaccination against a variant IBDV strain. Avian Dis 53(4):624–628

    Article  CAS  PubMed  Google Scholar 

  15. Zhou X, Wang D, Xiong J, Zhang P, Li Y, She R (2010) Protection of chickens, with or without maternal antibodies, against IBDV infection by a recombinant IBDV-VP2 protein. Vaccine 28(23):3990–3996. doi:10.1016/j.vaccine.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  16. Fahey KJ, Chapman AJ, Macreadie IG, Vaughan PR, McKern NM, Skicko JI, Ward CW, Azad AA (1991) A recombinant subunit vaccine that protects progeny chickens from infectious bursal disease. Avian Pathol 20(3):447–460. doi:10.1080/03079459108418783

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S (2015) DNA vaccine against infectious bursal disease virus: still more to explore. Vet Microbiol 175(2–4):389–390. doi:10.1016/j.vetmic.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-Arias A, Martinez S, Rodriguez JF (1997) The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J Virol 71(10):8014–8018

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Deka H, Chakraborty S (2014) Compositional Constraint Is the Key Force in Shaping Codon Usage Bias in Hemagglutinin Gene in H1N1 Subtype of Influenza A Virus. Int J Genomics 2014:349139. doi:10.1155/2014/349139

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wang M, Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Liu WQ, Gu YX, Zhang J (2011) Analysis of codon usage in Newcastle disease virus. Virus Genes 42(2):245–253. doi:10.1007/s11262-011-0574-z

    Article  CAS  PubMed  Google Scholar 

  21. Ding YZ, You YN, Sun DJ, Chen HT, Wang YL, Chang HY, Pan L, Fang YZ, Zhang ZW, Zhou P, Lv JL, Liu XS, Shao JJ, Zhao FR, Lin T, Stipkovits L, Pejsak Z, Zhang YG, Zhang J (2014) The Effects of the Context-Dependent Codon Usage Bias on the Structure of the nsp1alpha of Porcine Reproductive and Respiratory Syndrome Virus. Biomed Res Int 2014:765320. doi:10.1155/2014/765320

    PubMed Central  PubMed  Google Scholar 

  22. Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X (2014) Codon usage bias in human cytomegalovirus and its biological implication. Gene 545(1):5–14. doi:10.1016/j.gene.2014.05.018

    Article  CAS  PubMed  Google Scholar 

  23. Kumar CS, Kumar S (2014) Species based synonymous codon usage in fusion protein gene of Newcastle disease virus. PLoS One 9(12):e114754. doi:10.1371/journal.pone.0114754PONE-D-14-25870

    Article  PubMed Central  PubMed  Google Scholar 

  24. Li WH (1997) Molecular Evolution. second edition edn. Sinauer Associates, Sunderland

  25. Babbitt GA, Alawad MA, Schulze KV, Hudson AO (2014) Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid. Nucleic Acids Res. doi:10.1093/nar/gku811

    Google Scholar 

  26. Butt AM, Nasrullah I, Tong Y (2014) Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS One 9(3):e90905. doi:10.1371/journal.pone.0090905PONE-D-13-50453

    Article  PubMed Central  PubMed  Google Scholar 

  27. Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8(9):1893–1912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gu W, Zhou T, Ma J, Sun X, Lu Z (2004) The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 73(2):89–97. doi:10.1016/j.biosystems.2003.10.001 (S0303264703001965)

    Article  CAS  PubMed  Google Scholar 

  29. Epstein RJ, Lin K, Tan TW (2000) A functional significance for codon third bases. Gene 245(2):291–298 (S0378-1119(00)00042-1)

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Wang C, Cheng X, Wu T, Zhang C (2011) Synonymous codon usage of the VP2 gene of a very virulent infectious bursal disease virus isolate serial passaged in chicken embryos. Biosystems 104(1):42–47. doi:10.1016/j.biosystems.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Ermolaeva MD (2001) Synonymous codon usage in bacteria. Curr Issues Mol Biol 3(4):91–97

    CAS  PubMed  Google Scholar 

  32. Lynn DJ, Singer GA, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30(19):4272–4277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9(4):R70. doi:10.1186/gb-2008-9-4-r70

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kober KM, Pogson GH (2013) Genome-wide patterns of codon bias are shaped by natural selection in the purple sea urchin, Strongylocentrotus purpuratus. G3 (Bethesda) 3(7):1069–1083. doi:10.1534/g3.113.005769 (g3.113.005769 [pii])

  35. Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14(19):7737–7749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. LA Sharp PM (1993) An atlas of drosophila genes. Oxford University Press, New York

    Google Scholar 

  37. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29 (0378-1119(90)90491-9)

    Article  CAS  PubMed  Google Scholar 

  38. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    CAS  PubMed  Google Scholar 

  39. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132 (0022-2836(82)90515-0 [pii])

    Article  CAS  PubMed  Google Scholar 

  40. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  41. Zhong J, Li Y, Zhao S, Liu S, Zhang Z (2007) Mutation pressure shapes codon usage in the GC-Rich genome of foot-and-mouth disease virus. Virus Genes 35(3):767–776. doi:10.1007/s11262-007-0159-z

    Article  CAS  PubMed  Google Scholar 

  42. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92(1):1–7 (S016817020200309X)

    Article  CAS  PubMed  Google Scholar 

  43. Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22(15):3174–3180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Mr. Rohit Koul at Seasia Infotech for proofreading the manuscript. The IBDV research in our laboratory is currently supported by an IITG start-up grant, and partly by the Department of Biotechnology (NER-BPMC/2013/AAB21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C.S., Hazarika, N.M.J. & Kumar, S. Analysis of synonymous codon usage in the VP2 protein gene of infectious bursal disease virus. Arch Virol 160, 2359–2366 (2015). https://doi.org/10.1007/s00705-015-2505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2505-0

Keywords

Navigation