Skip to main content

Advertisement

Log in

Microarray analysis of differentially expressed transcripts in porcine intestinal epithelial cells (IPEC-J2) infected with porcine sapelovirus as a model to study innate immune responses to enteric viruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The local intestinal mucosa, the largest mucosal immune system in animals, plays an important role in resistance against intestinal pathogen infection. However, the molecular antiviral mechanisms of the intestinal mucosa remain poorly understood. In this study, we screened and identified differentially expressed transcripts in (PSV) porcine intestinal epithelial cells (IPEC-J2) infected with porcine sapelovirus using microarray analysis. A total of 2298 differentially expressed genes were screened at four time points during PSV infection. These genes were involved in numerous physical systems and molecular pathways, and particularly, some innate immune-associated pathways were significant. The results showed that large amounts of type I interferon were induced, and the related interferon effect pathway was activated when IPEC-J2 cells were infected with PSV. Three pathways of innate immune receptors, including Toll-like, NOD-like, and RIG-I-like receptors, were also activated. The antigen was then processed and presented through the MHCI and MHCII pathways. Interestingly, we found that the secretion network of IgA was activated in the early stage of PSV infection. Two exogenous and endogenous apoptosis pathways were also activated during PSV infection. The results revealed changes in gene transcription, particularly those of innate immune pathway genes that were associated with PSV infection in IPEC-J2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opinion Immunol 19:488–496

    Article  CAS  Google Scholar 

  2. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  3. Bailey M (2009) The mucosal immune system: recent developments and future directions in the pig. Dev Comp Immunol 33:375–383

    Article  PubMed  CAS  Google Scholar 

  4. Blondel B, Autret A, Brisac C, Martin-Latil S, Mousson L, Pelletier I, Estaquier J, Colbere-Garapin F (2009) Apoptotic signaling cascades operating in poliovirus-infected cells. Front Biosci J Virtual Libr 14:2181–2192

    Article  CAS  Google Scholar 

  5. Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK (2001) Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 75:11621–11629

    Article  PubMed  CAS  Google Scholar 

  6. Buenz EJ, Howe CL (2006) Picornaviruses and cell death. Trends Microbiol 14:28–36

    Article  PubMed  CAS  Google Scholar 

  7. Chard LS, Bordeleau ME, Pelletier J, Tanaka J, Belsham GJ (2006) Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. J Gen Virol 87:927–936

    Article  PubMed  CAS  Google Scholar 

  8. Chorny A, Puga I, Cerutti A (2010) Innate signaling networks in mucosal IgA class switching. Adv Immunol 107:31–69

    Article  PubMed  CAS  Google Scholar 

  9. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    Article  PubMed  CAS  Google Scholar 

  10. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141:483–496

    Article  PubMed  CAS  Google Scholar 

  11. Daidoji T, Koma T, Du A, Yang CS, Ueda M, Ikuta K, Nakaya T (2008) H5N1 avian influenza virus induces apoptotic cell death in mammalian airway epithelial cells. J Virol 82:11294–11307

    Article  PubMed  CAS  Google Scholar 

  12. Dash P, Barnett PV, Denyer MS, Jackson T, Stirling CM, Hawes PC, Simpson JL, Monaghan P, Takamatsu HH (2010) Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells. J Virol 84:9149–9160

    Article  PubMed  CAS  Google Scholar 

  13. Dziarski R (2003) Recognition of bacterial peptidoglycan by the innate immune system. Cellular Mol Life Sci (CMLS) 60:1793–1804

    Article  CAS  Google Scholar 

  14. Eleouet JF, Chilmonczyk S, Besnardeau L, Laude H (1998) Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol 72:4918–4924

    PubMed  CAS  Google Scholar 

  15. Finberg RW, Wang JP, Kurt-Jones EA (2007) Toll like receptors and viruses. Rev Med Virol 17:35–43

    Article  PubMed  CAS  Google Scholar 

  16. Fu ZF, Jackson AC (2005) Neuronal dysfunction and death in rabies virus infection. J Neurovirol 11:101–106

    Article  PubMed  CAS  Google Scholar 

  17. Furr SR, Chauhan VS, Sterka D Jr, Grdzelishvili V, Marriott I (2008) Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol 14:503–513

    Article  PubMed  CAS  Google Scholar 

  18. Gerlier D, Valentin H (2009) Measles virus interaction with host cells and impact on innate immunity. Curr Top Microbiol Immunol 329:163–191

    Article  PubMed  CAS  Google Scholar 

  19. Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-puppeteer’s wires. Cytometry Part A. J Int Soc Anal Cytol 77:11–21

    Google Scholar 

  20. Haller O, Kochs G (2011) Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interf Cytokine Res: Off J Int Soc Interf Cytokine Res 31:79–87

    Article  CAS  Google Scholar 

  21. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  22. Hecht G (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 277:C351–C358

    PubMed  CAS  Google Scholar 

  23. Hegde NR, Chevalier MS, Johnson DC (2003) Viral inhibition of MHC class II antigen presentation. Trends Immunol 24:278–285

    Article  PubMed  CAS  Google Scholar 

  24. Holmgren J, Czerkinsky C, Eriksson K, Mharandi A (2003) Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21(Suppl 2):S89–S95

    Article  PubMed  Google Scholar 

  25. Kaku Y, Sarai A, Murakami Y (2001) Genetic reclassification of porcine enteroviruses. J Gen Virol 82:417–424

    PubMed  CAS  Google Scholar 

  26. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  27. Krumbholz A, Dauber M, Henke A, Birch-Hirschfeld E, Knowles NJ, Stelzner A, Zell R (2002) Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 76:5813–5821

    Article  PubMed  CAS  Google Scholar 

  28. Ku BK, Kim SB, Moon OK, Lee SJ, Lee JH, Lyoo YS, Kim HJ, Sur JH (2005) Role of apoptosis in the pathogenesis of Asian and South American foot-and-mouth disease viruses in swine. J Vet Med Sci/Jpn Soc Vet Sci 67:1081–1088

    Article  Google Scholar 

  29. Lamkanfi M, Kanneganti TD (2012) Regulation of immune pathways by the NOD-like receptor NLRC5. Immunobiology 217:13–16

    Article  PubMed  CAS  Google Scholar 

  30. Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C, Hua X (2011) Isolation and characterization of the first Chinese porcine sapelovirus strain. Arch Virol 156:1567–1574

    Article  PubMed  CAS  Google Scholar 

  31. Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, Si-Tahar M (2007) Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368–3372

    PubMed  Google Scholar 

  32. Lin CH, Shih WL, Lin FL, Hsieh YC, Kuo YR, Liao MH, Liu HJ (2009) Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway. Apoptosis: Int J Progr Cell Death 14:864–877

    Article  CAS  Google Scholar 

  33. Ling Z, Tran KC, Teng MN (2009) Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol 83:3734–3742

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y, Zhang X (2007) Murine coronavirus-induced oligodendrocyte apoptosis is mediated through the activation of the Fas signaling pathway. Virology 360:364–375

    Article  PubMed  CAS  Google Scholar 

  35. MacMicking JD (2004) IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol 25:601–609

    Article  PubMed  CAS  Google Scholar 

  36. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  PubMed  CAS  Google Scholar 

  37. Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci (CMLS) 68:3661–3673

    Article  CAS  Google Scholar 

  38. Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Abe M, Yamaoka S, Sugiyama M (2011) Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Res 155:168–174

    Article  PubMed  CAS  Google Scholar 

  39. Meissner TB, Li A, Kobayashi KS (2012) NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect/Institut Pasteur 14:477–484

    Article  CAS  Google Scholar 

  40. Morr M, Takeuchi O, Akira S, Simon MM, Muhlradt PF (2002) Differential recognition of structural details of bacterial lipopeptides by toll-like receptors. Eur J Immunol 32:3337–3347

    PubMed  CAS  Google Scholar 

  41. Netea MG, Van der Meer JW, Kullberg BJ (2004) Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 12:484–488

    Article  PubMed  CAS  Google Scholar 

  42. Newberry RD, Lorenz RG (2005) Organizing a mucosal defense. Immunol Rev 206:6–21

    Article  PubMed  CAS  Google Scholar 

  43. Pachler K, Vlasak R (2011) Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling. Virol J 8:48

    Article  PubMed  CAS  Google Scholar 

  44. Patel S, Zuckerman M, Smith M (2003) Real-time quantitative PCR of Epstein-Barr virus BZLF1 DNA using the light cycler. J Virol Methods 109:227–233

    Article  PubMed  CAS  Google Scholar 

  45. Peng JM, Liang SM, Liang CM (2004) VP1 of foot-and-mouth disease virus induces apoptosis via the Akt signaling pathway. J Biol Chem 279:52168–52174

    Article  PubMed  CAS  Google Scholar 

  46. Peters VB, Sperber KE (1999) The effect of viruses on the ability to present antigens via the major histocompatibility complex. Microbes Infect/Institut Pasteur 1:335–345

    Article  CAS  Google Scholar 

  47. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314:997–1001

    Article  PubMed  CAS  Google Scholar 

  48. Ruggieri A, Di Trani L, Gatto I, Franco M, Vignolo E, Bedini B, Elia G, Buonavoglia C (2007) Canine coronavirus induces apoptosis in cultured cells. Vet Microbiol 121:64–72

    Article  PubMed  CAS  Google Scholar 

  49. Schierack P, Nordhoff M, Pollmann M, Weyrauch KD, Amasheh S, Lodemann U, Jores J, Tachu B, Kleta S, Blikslager A, Tedin K, Wieler LH (2006) Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol 125:293–305

    Article  PubMed  CAS  Google Scholar 

  50. Sen GC, Sarkar SN (2005) Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev 16:1–14

    Article  PubMed  CAS  Google Scholar 

  51. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  PubMed  CAS  Google Scholar 

  52. Sozzi E, Barbieri I, Lavazza A, Lelli D, Moreno A, Canelli E, Bugnetti M, Cordioli P (2010) Molecular characterization and phylogenetic analysis of VP1 of porcine enteric picornaviruses isolates in Italy. Transbound Emerg Dis 57:434–442

    Article  PubMed  CAS  Google Scholar 

  53. Thacker EL, Halbur PG, Paul PS, Thacker BJ (1998) Detection of intracellular porcine reproductive and respiratory syndrome virus nucleocapsid protein in porcine macrophages by flow cytometry. J Vet Diagn Invest: Off Publ Am Assoc Vet Lab Diagn Inc 10:308–311

    Article  CAS  Google Scholar 

  54. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940

    Article  PubMed  CAS  Google Scholar 

  55. Tseng CH, Tsai HJ (2007) Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. Virus Res 129:104–114

    Article  PubMed  CAS  Google Scholar 

  56. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064

    Article  PubMed  CAS  Google Scholar 

  57. Wong RT, Hon CC, Zeng F, Leung FC (2007) Screening of differentially expressed transcripts in infectious bursal disease virus-induced apoptotic chicken embryonic fibroblasts by using cDNA microarrays. J Gen Virol 88:1785–1796

    Article  PubMed  CAS  Google Scholar 

  58. Wu MS, Chen CW, Liu YC, Huang HH, Lin CH, Tzeng CS, Chang CY (2012) Transcriptional analysis of orange-spotted grouper reacting to experimental grouper iridovirus infection. Dev Comp Immunol 37:233–242

    Article  PubMed  CAS  Google Scholar 

  59. Zell R, Dauber M, Krumbholz A, Henke A, Birch-Hirschfeld E, Stelzner A, Prager D, Wurm R (2001) Porcine teschoviruses comprise at least eleven distinct serotypes: molecular and evolutionary aspects. J Virol 75:1620–1631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuguo Hua or Jian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, D., Tang, C., Yue, H. et al. Microarray analysis of differentially expressed transcripts in porcine intestinal epithelial cells (IPEC-J2) infected with porcine sapelovirus as a model to study innate immune responses to enteric viruses. Arch Virol 158, 1467–1475 (2013). https://doi.org/10.1007/s00705-013-1638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1638-2

Keywords

Navigation